Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2017 May;101(9):3551-3565.
doi: 10.1007/s00253-017-8250-4. Epub 2017 Apr 5.

Current state and prospects of the phytosynthesized colloidal gold nanoparticles and their applications in cancer theranostics

Affiliations
Review

Current state and prospects of the phytosynthesized colloidal gold nanoparticles and their applications in cancer theranostics

Muhammad Ovais et al. Appl Microbiol Biotechnol. 2017 May.

Abstract

The design, development, and biomedical applications of phytochemical-based green synthesis of biocompatible colloidal gold nanoparticles (AuNPs) are becoming an emerging field due to several advantages (safer, eco-friendly, simple, fast, energy efficient, low-cost, and less toxic) over conventional chemical synthetic procedures. Biosynthesized colloidal gold nanoparticles are remarkably attractive in several biomedical applications including cancer theranostics due to small size, unusual physico-chemical properties, facile surface modification, high biocompatibility, and numerous other advantages. Of late, several researchers have investigated the biosynthesis and prospective applications (diagnostics, imaging, drug delivery, and cancer therapeutics) of AuNPs in health care and medicine. However, not a single review article is available in the literature that demonstrates the anti-cancer potential of biosynthesized colloidal AuNPs with detailed mechanistic study. In the present review article, we for the first time discuss the biointerface of colloidal AuNPs, plants, and cancer mainly (i) comprehensive mechanistic aspects of phytochemical-based synthesis of AuNPs; (ii) proposed anti-cancer mechanisms along with biomedical applications in diagnostics, imaging, and drug delivery; and (iii) key challenges for biogenic AuNPs as future cancer nanomedicine.

Keywords: Cancer theranostics; Colloidal gold nanoparticles; Green synthesis; Nanomedicine; Phytonanotechnology.

PubMed Disclaimer

LinkOut - more resources