The Role of Mitochondrial Aldehyde Dehydrogenase 2 (ALDH2) in Neuropathology and Neurodegeneration
- PMID: 28382610
- PMCID: PMC10618051
The Role of Mitochondrial Aldehyde Dehydrogenase 2 (ALDH2) in Neuropathology and Neurodegeneration
Abstract
Aldehydes-induced toxicity has been implicated in many neurodegenerative diseases. Exposure to reactive aldehydes from (1) alcohol and food metabolism; (2) environmental pollutants, including car, factory exhausts, smog, pesticides, herbicides; (3) metabolism of neurotransmitters, amino acids and (4) lipid peroxidation of biological membrane from excessive ROS, all contribute to 'aldehydic load' that has been linked to the pathology of neurodegenerative diseases. In particular, the α, β-unsaturated aldehydes derived from lipid peroxidation, 4-hydroxynonenal (4-HNE), DOPAL (MAO product of dopamine), malondialdehyde, acrolein and acetaldehyde, all readily form chemical adductions with proteins, DNA and lipids, thus causing neurotoxicity. Mitochondrial aldehyde dehydrogenase 2 (ALDH 2) is a major aldehyde metabolizing enzyme that protects against deleterious aldehyde buildup in brain, a tissue that has a particularly high mitochondrial content. In this review, we highlight the deleterious effects of increased aldehydic load in the neuropathology of ischemic stroke, Alzheimer's disease and Parkinson's disease. We also discuss evidence for the association between ALDH2 deficiency, a common East Asianspecific mutation, and these neuropathologies. A novel class of small molecule aldehyde dehydrogenase activators (Aldas), represented by Alda-1, reduces neuronal cell death in models of ischemic stroke, Alzheimer's disease and Parkinson's disease. Together, these data suggest that reducing aldeydic load by enhancing the activity of aldehyde dehydrogenases, such as ALDH2, represents as a therapeutic strategy for neurodegenerative diseases.
References
-
- Di Carlo M, Giacomazza D, Picone P, Nuzzo D, San Biagio PL. Are oxidative stress and mitochondrial dysfunction the key players in the neurodegenerative diseases? Free radical research. 2012;46(11):1327–38. - PubMed
-
- Magistretti PJ, Allaman I. A cellular perspective on brain energy metabolism and functional imaging. Neuron. 2015;86(4):883–901. - PubMed
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
Medical
Miscellaneous