Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1988 Jul;37(7):930-5.
doi: 10.2337/diab.37.7.930.

Administration of silica particles or anti-Lyt2 antibody prevents beta-cell destruction in NOD mice given cyclophosphamide

Affiliations

Administration of silica particles or anti-Lyt2 antibody prevents beta-cell destruction in NOD mice given cyclophosphamide

B Charlton et al. Diabetes. 1988 Jul.

Abstract

The cellular pathway of beta-cell destruction in type I (insulin-dependent) diabetes is still undefined. L3T4+ T-lymphocytes have a role in both the initiation of insulitis and in recurrent disease in transplanted allogeneic islets in nonobese diabetic (NOD) mice. The roles of macrophages and Lyt2+ T-lymphocytes in beta-cell destruction were studied in cyclophosphamide-induced diabetic NOD mice with silica particles and a rat anti-Lyt2 monoclonal antibody. After administration of cyclophosphamide, 10 of 26 untreated mice and 1 of 21 anti-Lyt2-treated mice became diabetic. Insulitis was significantly reduced in anti-Lyt2-treated mice, and immunocytochemical staining showed a lack of Lyt2+ cells. Only 1 of 19 silica-treated mice became diabetic, compared to 8 of 19 control mice. This study demonstrates that both Lyt2+ T-lymphocytes and macrophages are necessary, but not sufficient, for beta-cell destruction in NOD mice. Therefore, we propose that macrophages present beta-cell antigen to L3T4+ cells, which induce cytotoxic Lyt2+ cells to specifically destroy beta-cells.

PubMed Disclaimer

Publication types

MeSH terms

LinkOut - more resources