Phenome-wide heritability analysis of the UK Biobank
- PMID: 28388634
- PMCID: PMC5400281
- DOI: 10.1371/journal.pgen.1006711
Phenome-wide heritability analysis of the UK Biobank
Erratum in
-
Correction: Phenome-wide heritability analysis of the UK Biobank.PLoS Genet. 2018 Feb 9;14(2):e1007228. doi: 10.1371/journal.pgen.1007228. eCollection 2018 Feb. PLoS Genet. 2018. PMID: 29425192 Free PMC article.
Abstract
Heritability estimation provides important information about the relative contribution of genetic and environmental factors to phenotypic variation, and provides an upper bound for the utility of genetic risk prediction models. Recent technological and statistical advances have enabled the estimation of additive heritability attributable to common genetic variants (SNP heritability) across a broad phenotypic spectrum. Here, we present a computationally and memory efficient heritability estimation method that can handle large sample sizes, and report the SNP heritability for 551 complex traits derived from the interim data release (152,736 subjects) of the large-scale, population-based UK Biobank, comprising both quantitative phenotypes and disease codes. We demonstrate that common genetic variation contributes to a broad array of quantitative traits and human diseases in the UK population, and identify phenotypes whose heritability is moderated by age (e.g., a majority of physical measures including height and body mass index), sex (e.g., blood pressure related traits) and socioeconomic status (education). Our study represents the first comprehensive phenome-wide heritability analysis in the UK Biobank, and underscores the importance of considering population characteristics in interpreting heritability.
Conflict of interest statement
The authors have declared that no competing interests exist.
Figures



Similar articles
-
Distinct explanations underlie gene-environment interactions in the UK Biobank.Am J Hum Genet. 2025 Mar 6;112(3):644-658. doi: 10.1016/j.ajhg.2025.01.014. Epub 2025 Feb 17. Am J Hum Genet. 2025. PMID: 39965571
-
A Fast and Accurate Method for Genome-wide Scale Phenome-wide G × E Analysis and Its Application to UK Biobank.Am J Hum Genet. 2019 Dec 5;105(6):1182-1192. doi: 10.1016/j.ajhg.2019.10.008. Epub 2019 Nov 14. Am J Hum Genet. 2019. PMID: 31735295 Free PMC article.
-
A scalable and robust variance components method reveals insights into the architecture of gene-environment interactions underlying complex traits.Am J Hum Genet. 2024 Jul 11;111(7):1462-1480. doi: 10.1016/j.ajhg.2024.05.015. Epub 2024 Jun 11. Am J Hum Genet. 2024. PMID: 38866020 Free PMC article.
-
A review of SNP heritability estimation methods.Brief Bioinform. 2022 May 13;23(3):bbac067. doi: 10.1093/bib/bbac067. Brief Bioinform. 2022. PMID: 35289357 Review.
-
The UK Biobank: A Shining Example of Genome-Wide Association Study Science with the Power to Detect the Murky Complications of Real-World Epidemiology.Annu Rev Genomics Hum Genet. 2022 Aug 31;23:569-589. doi: 10.1146/annurev-genom-121321-093606. Epub 2022 May 4. Annu Rev Genomics Hum Genet. 2022. PMID: 35508184 Review.
Cited by
-
Understanding Insulin in the Age of Precision Medicine and Big Data: Under-Explored Nature of Genomics.Biomolecules. 2023 Jan 30;13(2):257. doi: 10.3390/biom13020257. Biomolecules. 2023. PMID: 36830626 Free PMC article. Review.
-
Electronic health records: the next wave of complex disease genetics.Hum Mol Genet. 2018 May 1;27(R1):R14-R21. doi: 10.1093/hmg/ddy081. Hum Mol Genet. 2018. PMID: 29547983 Free PMC article. Review.
-
Integrating predicted transcriptome from multiple tissues improves association detection.PLoS Genet. 2019 Jan 22;15(1):e1007889. doi: 10.1371/journal.pgen.1007889. eCollection 2019 Jan. PLoS Genet. 2019. PMID: 30668570 Free PMC article.
-
Accelerated estimation and permutation inference for ACE modeling.Hum Brain Mapp. 2019 Aug 15;40(12):3488-3507. doi: 10.1002/hbm.24611. Epub 2019 Apr 29. Hum Brain Mapp. 2019. PMID: 31037793 Free PMC article.
-
Estimation of non-null SNP effect size distributions enables the detection of enriched genes underlying complex traits.PLoS Genet. 2020 Jun 15;16(6):e1008855. doi: 10.1371/journal.pgen.1008855. eCollection 2020 Jun. PLoS Genet. 2020. PMID: 32542026 Free PMC article.
References
-
- Visscher P. M., Hill W. G., Wray N. R. (2008). Heritability in the genomics era—concepts and misconceptions. Nature Reviews Genetics, 9(4), 255–266. doi: 10.1038/nrg2322 - DOI - PubMed
-
- Polderman T. J., Benyamin B., De Leeuw C. A., Sullivan P. F., Van Bochoven A., Visscher P. M., et al. (2015). Meta-analysis of the heritability of human traits based on fifty years of twin studies. Nature Genetics, 47(7), 702–709. doi: 10.1038/ng.3285 - DOI - PubMed
-
- Lee S. H., Wray N. R., Goddard M. E., Visscher P. M. (2011). Estimating missing heritability for disease from genome-wide association studies. The American Journal of Human Genetics, 88(3), 294–305. doi: 10.1016/j.ajhg.2011.02.002 - DOI - PMC - PubMed
-
- Yang J., Benyamin B., McEvoy B. P., Gordon S., Henders A. K., Nyholt D. R., et al. (2010). Common SNPs explain a large proportion of the heritability for human height. Nature Genetics, 42(7), 565–569. doi: 10.1038/ng.608 - DOI - PMC - PubMed
-
- Yang J., Lee S. H., Goddard M. E., Visscher P. M. (2011). GCTA: a tool for genome-wide complex trait analysis. The American Journal of Human Genetics, 88(1), 76–82. doi: 10.1016/j.ajhg.2010.11.011 - DOI - PMC - PubMed
Publication types
MeSH terms
Grants and funding
LinkOut - more resources
Full Text Sources
Other Literature Sources
Medical