Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2017 Apr 7;146(13):134902.
doi: 10.1063/1.4979496.

Assembled viral-like nanoparticles from elastic capsomers and polyion

Affiliations

Assembled viral-like nanoparticles from elastic capsomers and polyion

Daniel G Angelescu. J Chem Phys. .

Abstract

Molecular dynamics simulations are carried out on a coarse-grained model to describe the polyion driven co-assembly of elastic capsomers as viral-like aggregates. The kinetics and structural properties of the complexes are examined using cationic capsomers, an anionic polyion, both modelled using beads connected by springs, and counterions neutralizing separately the two charged species. Polyion overcharging the capsid is encapsulated owing to combined effects of the capsomer-capsomer short-range interactions, the polyion ability to follow a Hamiltonian path, and Donnan equilibrium. Conditions leading to a high yield of viral-like nanoparticles are found, and the simulations demonstrate that the capsomer elasticity provides mechanisms that improve the reliability toward correctly formed capsids. These mechanisms are related to a highly irregular capsomer cluster growth followed by the appearance of two stable capsomer clusters with the polyion acting as a tether between them. Elevated capsomeric flexibility provides an additional pathway to anneal the kinetically trapped structures by the ejection of a capsomeric monomer from a malformed complex followed by a rebinding step to form a correct capsid.

PubMed Disclaimer

LinkOut - more resources