Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2017 Jun 1:247:26-33.
doi: 10.1016/j.ygcen.2017.04.001. Epub 2017 Apr 5.

Thyroid hormones and learning-associated neuroplasticity

Affiliations
Free article
Review

Thyroid hormones and learning-associated neuroplasticity

Sander R Raymaekers et al. Gen Comp Endocrinol. .
Free article

Abstract

Thyroid hormones (THs) are crucial for brain development and maturation in all vertebrates. Especially during pre- and perinatal development, disruption of TH signaling leads to a multitude of neurological deficits. Many animal models provided insight in the role of THs in brain development, but specific data on how they affect the brain's ability to learn and adapt depending on environmental stimuli are rather limited. In this review, we focus on a number of learning processes like spatial learning, fear conditioning, vocal learning and imprinting behavior and on how abnormal TH signaling during development shapes subsequent performance. It is clear from multiple studies that TH deprivation leads to defects in learning on all fronts, and interestingly, changes in local expression of the TH activator deiodinase type 2 seem to have an important role. Taking into account that THs are regulated in a very space-specific manner, there is thus increasing pressure to investigate more local TH regulators as potential factors involved in neuroplasticity. As these learning processes are also important for proper adult human functioning, further elucidating the role of THs in developmental neuroplasticity in various animal models is an important field for advancing both fundamental and applied knowledge on human brain function.

Keywords: Brain; Critical period; Development; Learning; Neuroplasticity; Thyroid hormone.

PubMed Disclaimer

Substances

LinkOut - more resources