Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2017 Mar;36(1):3-11.
doi: 10.23876/j.krcp.2017.36.1.3. Epub 2017 Mar 31.

Medical big data: promise and challenges

Affiliations

Medical big data: promise and challenges

Choong Ho Lee et al. Kidney Res Clin Pract. 2017 Mar.

Abstract

The concept of big data, commonly characterized by volume, variety, velocity, and veracity, goes far beyond the data type and includes the aspects of data analysis, such as hypothesis-generating, rather than hypothesis-testing. Big data focuses on temporal stability of the association, rather than on causal relationship and underlying probability distribution assumptions are frequently not required. Medical big data as material to be analyzed has various features that are not only distinct from big data of other disciplines, but also distinct from traditional clinical epidemiology. Big data technology has many areas of application in healthcare, such as predictive modeling and clinical decision support, disease or safety surveillance, public health, and research. Big data analytics frequently exploits analytic methods developed in data mining, including classification, clustering, and regression. Medical big data analyses are complicated by many technical issues, such as missing values, curse of dimensionality, and bias control, and share the inherent limitations of observation study, namely the inability to test causality resulting from residual confounding and reverse causation. Recently, propensity score analysis and instrumental variable analysis have been introduced to overcome these limitations, and they have accomplished a great deal. Many challenges, such as the absence of evidence of practical benefits of big data, methodological issues including legal and ethical issues, and clinical integration and utility issues, must be overcome to realize the promise of medical big data as the fuel of a continuous learning healthcare system that will improve patient outcome and reduce waste in areas including nephrology.

Keywords: Big data; Data mining; Epidemiology; Healthcare; Statistics.

PubMed Disclaimer

Conflict of interest statement

Conflicts of interest

All authors have no conflicts of interest to declare.

Figures

Figure 1
Figure 1
A continuous learning healthcare system.

Similar articles

Cited by

References

    1. Murdoch TB, Detsky AS. The inevitable application of big data to health care. JAMA. 2013;309:1351–1352. doi: 10.1001/jama.2013.393. - DOI - PubMed
    1. Rumsfeld JS, Joynt KE, Maddox TM. Big data analytics to improve cardiovascular care: promise and challenges. Nat Rev Cardiol. 2016;13:350–359. doi: 10.1038/nrcardio.2016.42. - DOI - PubMed
    1. Bellazzi R. Big data and biomedical informatics: a challenging opportunity. Yearb Med Inform. 2014;9:8–13. doi: 10.15265/IY-2014-0024. - DOI - PMC - PubMed
    1. Scruggs SB, Watson K, Su AI, Hermjakob H, Yates JR, 3rd, Lindsey ML, Ping P. Harnessing the heart of big data. Circ Res. 2015;116:1115–1119. doi: 10.1161/CIRCRESAHA.115.306013. - DOI - PMC - PubMed
    1. Sinha A, Hripcsak G, Markatou M. Large datasets in biomedicine: a discussion of salient analytic issues. J Am Med Inform Assoc. 2009;16:759–767. doi: 10.1197/jamia.M2780. - DOI - PMC - PubMed

LinkOut - more resources