An empirical Bayes approach to network recovery using external knowledge
- PMID: 28393396
- PMCID: PMC5510725
- DOI: 10.1002/bimj.201600090
An empirical Bayes approach to network recovery using external knowledge
Abstract
Reconstruction of a high-dimensional network may benefit substantially from the inclusion of prior knowledge on the network topology. In the case of gene interaction networks such knowledge may come for instance from pathway repositories like KEGG, or be inferred from data of a pilot study. The Bayesian framework provides a natural means of including such prior knowledge. Based on a Bayesian Simultaneous Equation Model, we develop an appealing Empirical Bayes (EB) procedure that automatically assesses the agreement of the used prior knowledge with the data at hand. We use variational Bayes method for posterior densities approximation and compare its accuracy with that of Gibbs sampling strategy. Our method is computationally fast, and can outperform known competitors. In a simulation study, we show that accurate prior data can greatly improve the reconstruction of the network, but need not harm the reconstruction if wrong. We demonstrate the benefits of the method in an analysis of gene expression data from GEO. In particular, the edges of the recovered network have superior reproducibility (compared to that of competitors) over resampled versions of the data.
Keywords: Empirical Bayes; High-dimensional Bayesian inference; Prior information; Undirected network; Variational approximation.
© 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Conflict of interest statement
Figures







References
-
- Allen GI, Liu Z. A Local Poisson Graphical Model for Inferring Networks From Sequencing Data. NanoBioscience, IEEE Transactions on. 2013;12:189–198. - PubMed
-
- Badea L, Herlea V, Dima SO, Dumitrascu T, Popescu I. Combined gene expression analysis of whole-tissue and microdissected pancreatic ductal adenocarcinoma identifies genes specifically overexpressed in tumor epithelia. Hepatogastroenterology. 2008;55:2016–2027. - PubMed
-
- Carvalho CM, Polson NG, Scott JG. The horseshoe estimator for sparse signals. Biometrika. 2010;97:465–480.
MeSH terms
Grants and funding
LinkOut - more resources
Full Text Sources
Other Literature Sources