Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2017 Jun;21(6):571-581.
doi: 10.1080/14728222.2017.1317749. Epub 2017 Apr 21.

Targetting PED/PEA-15 for diabetes treatment

Affiliations
Review

Targetting PED/PEA-15 for diabetes treatment

Francesca Fiory et al. Expert Opin Ther Targets. 2017 Jun.

Abstract

PED/PEA-15 is an ubiquitously expressed protein, involved in the regulation of proliferation and apoptosis. It is commonly overexpressed in Type 2 Diabetes (T2D) and in different T2D-associated comorbidities, including cancer and certain neurodegenerative disorders. Areas covered: In mice, Ped/Pea-15 overexpression impairs glucose tolerance and, in combination with high fat diets, further promotes insulin resistance and T2D. It also controls β-cell mass, altering caspase-3 activation and the expression of pro- and antiapoptotic genes. These changes are mediated by PED/PEA-15-PLD1 binding. Overexpression of PLD1 D4 domain specifically blocks Ped/Pea-15-PLD1 interaction, reverting the effect of Ped/Pea-15 in vivo. D4α, a D4 N-terminal peptide, is able to displace Ped/Pea-15-PLD1 binding, but features greater stability in vivo compared to the entire D4 peptide. Here, we review early mechanistic studies on PED/PEA-15 relevance in apoptosis before focusing on its role in cancer and T2D. Finally, we describe potential therapeutic opportunities for T2D based on PED/PEA-15 targeting. Expert opinion: T2D is a major problem for public health and economy. Thus, the identification of new molecules with pharmacological activity for T2D represents an urgent need. Further studies with D4α will help to identify smaller pharmacologically active peptides and innovative molecules of potential pharmacological interest for T2D treatment.

Keywords: PED/PEA-15; PLD1; Type 2 diabetes; apoptosis; beta cells; glucose tolerance; glucose uptake; insulin resistance; insulin secretion; protein-protein interaction.

PubMed Disclaimer

LinkOut - more resources