Synthesis of umbelliferone derivatives in Escherichia coli and their biological activities
- PMID: 28396694
- PMCID: PMC5382406
- DOI: 10.1186/s13036-017-0056-5
Synthesis of umbelliferone derivatives in Escherichia coli and their biological activities
Abstract
Background: Umbelliferone, also known as 7-hydroxycoumarin, is a phenolic metabolite found in many familiar plants. Its derivatives have been shown to have various pharmacological and chemo-preventive effects on human health. A uridine diphosphate glycosyltransferase YjiC from Bacillus licheniformis DSM 13, a cytochrome P450BM3 (CYP450 BM3) variant namely mutant 13 (M13) from Bacillus megaterium, and an O-methyltransferase from Streptomyces avermitilis (SaOMT2) were used for modifications of umbelliferone.
Results: Three umbelliferone derivatives (esculetin, skimmin, and herniarin) were generated through enzymatic and whole cell catalysis. To improve the efficiencies of biotransformation, different media, incubation time and concentration of substrate were optimized and the production was scaled up using a 3-L fermentor. The maximum yields of esculetin, skimmin, and herniarin were 337.10 μM (67.62%), 995.43 μM (99.54%), and 37.13 μM (37.13%), respectively. The water solubility of esculetin and skimmin were 1.28-folds and 3.98-folds as high as umbelliferone, respectively, whereas herniarin was 1.89-folds less soluble than umbelliferone. Moreover, the antibacterial and anticancer activities of herniarin showed higher than umbelliferone, esculetin and skimmin.
Conclusions: This study proves that both native and engineered enzymes could be employed for the production of precious compounds via whole cell biocatalysis. We successfully produced three molecules herniarin, esculetin and skimmin in practical amounts and their antibacterial and anticancer properties were accessed. One of the newly synthesized molecules the present research suggests that the combinatorial biosynthesis of different biosynthetic enzymes could rapidly promote to a novel secondary metabolite.
Keywords: Glycosylation; Hydroxylation; Methylation; Umbelliferone.
Figures




References
-
- Kim SH, Kang KA, Zhang R, Piao MJ, Ko DO, Wang ZH, Chae SW, Kang SS, Lee KH, Kang HK, Kang HW, Hyun JW. Protective effect of esculetin against oxidative stress-induced cell damage via scavenging reactive oxygen species. Acta Pharmacol Sin. 2008;29:1319–1326. doi: 10.1111/j.1745-7254.2008.00878.x. - DOI - PubMed
-
- Kimura Y, Sumiyoshi M. Antitumor and antimetastatic actions of dihydroxycoumarins (esculetin or fraxetin) through the inhibition of M2 macrophage differentiation in tumor-associated macrophages and/or G1 arrest in tumor cells. Eur J Pharmacol. 2015;746:115–125. doi: 10.1016/j.ejphar.2014.10.048. - DOI - PubMed
LinkOut - more resources
Full Text Sources
Molecular Biology Databases