Adaptation and evolution of deep-sea scale worms (Annelida: Polynoidae): insights from transcriptome comparison with a shallow-water species
- PMID: 28397791
- PMCID: PMC5387418
- DOI: 10.1038/srep46205
Adaptation and evolution of deep-sea scale worms (Annelida: Polynoidae): insights from transcriptome comparison with a shallow-water species
Abstract
Polynoid scale worms (Polynoidae, Annelida) invaded deep-sea chemosynthesis-based ecosystems approximately 60 million years ago, but little is known about their genetic adaptation to the extreme deep-sea environment. In this study, we reported the first two transcriptomes of deep-sea polynoids (Branchipolynoe pettiboneae, Lepidonotopodium sp.) and compared them with the transcriptome of a shallow-water polynoid (Harmothoe imbricata). We determined codon and amino acid usage, positive selected genes, highly expressed genes and putative duplicated genes. Transcriptome assembly produced 98,806 to 225,709 contigs in the three species. There were more positively charged amino acids (i.e., histidine and arginine) and less negatively charged amino acids (i.e., aspartic acid and glutamic acid) in the deep-sea species. There were 120 genes showing clear evidence of positive selection. Among the 10% most highly expressed genes, there were more hemoglobin genes with high expression levels in both deep-sea species. The duplicated genes related to DNA recombination and metabolism, and gene expression were only enriched in deep-sea species. Deep-sea scale worms adopted two strategies of adaptation to hypoxia in the chemosynthesis-based habitats (i.e., rapid evolution of tetra-domain hemoglobin in Branchipolynoe or high expression of single-domain hemoglobin in Lepidonotopodium sp.).
Conflict of interest statement
The authors declare no competing financial interests.
Figures







Similar articles
-
Evolution of Single-Domain Globins in Hydrothermal Vent Scale-Worms.J Mol Evol. 2017 Dec;85(5-6):172-187. doi: 10.1007/s00239-017-9815-7. Epub 2017 Nov 1. J Mol Evol. 2017. PMID: 29094190
-
Phylogeny, evolution and mitochondrial gene order rearrangement in scale worms (Aphroditiformia, Annelida).Mol Phylogenet Evol. 2018 Aug;125:220-231. doi: 10.1016/j.ympev.2018.04.002. Epub 2018 Apr 3. Mol Phylogenet Evol. 2018. PMID: 29625228
-
Phylogenetics of Lepidonotopodini (Macellicephalinae, Polynoidae, Annelida) and Comparative Mitogenomics of Shallow-Water vs. Deep-Sea Scaleworms (Aphroditiformia).Biology (Basel). 2024 Nov 27;13(12):979. doi: 10.3390/biology13120979. Biology (Basel). 2024. PMID: 39765646 Free PMC article.
-
New perspectives on the ecology and evolution of siboglinid tubeworms.PLoS One. 2011 Feb 14;6(2):e16309. doi: 10.1371/journal.pone.0016309. PLoS One. 2011. PMID: 21339826 Free PMC article. Review. No abstract available.
-
New species and records of Heterospio (Annelida, Longosomatidae) from continental shelf, slope and abyssal depths of the Atlantic Ocean, Pacific Ocean, Indian Ocean and adjacent seas.Zootaxa. 2023 Apr 3;5260(1):1-74. doi: 10.11646/zootaxa.5260.1.1. Zootaxa. 2023. PMID: 37044570 Review.
Cited by
-
Convergent Evolution and Structural Adaptation to the Deep Ocean in the Protein-Folding Chaperonin CCTα.Genome Biol Evol. 2020 Nov 3;12(11):1929-1942. doi: 10.1093/gbe/evaa167. Genome Biol Evol. 2020. PMID: 32780796 Free PMC article.
-
Adaptation and evolution of the sea anemone Alvinactis sp. to deep-sea hydrothermal vents: A comparison using transcriptomes.Ecol Evol. 2022 Sep 20;12(9):e9309. doi: 10.1002/ece3.9309. eCollection 2022 Sep. Ecol Evol. 2022. PMID: 36188500 Free PMC article.
-
Insights into high-pressure acclimation: comparative transcriptome analysis of sea cucumber Apostichopus japonicus at different hydrostatic pressure exposures.BMC Genomics. 2020 Jan 21;21(1):68. doi: 10.1186/s12864-020-6480-9. BMC Genomics. 2020. PMID: 31964339 Free PMC article.
-
Genomic Analysis of a Scale Worm Provides Insights into Its Adaptation to Deep-Sea Hydrothermal Vents.Genome Biol Evol. 2023 Jul 3;15(7):evad125. doi: 10.1093/gbe/evad125. Genome Biol Evol. 2023. PMID: 37401460 Free PMC article.
-
Evolution of Single-Domain Globins in Hydrothermal Vent Scale-Worms.J Mol Evol. 2017 Dec;85(5-6):172-187. doi: 10.1007/s00239-017-9815-7. Epub 2017 Nov 1. J Mol Evol. 2017. PMID: 29094190
References
-
- Levin L. A. Deep-ocean life where oxygen is scarce. Am. Sci. 90, 436–444 (2002).
-
- Levin L. A. et al.. Hydrothermal Vents and Methane Seeps: Rethinking the Sphere of Influence. Front. Mar. Sci, 3, 72 (2016).
-
- Watanabe H., Fujikura K., Kojima S., Miyazaki J. I. & Fujiwara Y. Japan: vents and seeps in close proximity. In The Vent and Seep Biota (ed. Kiel S.) 379–401 (Springer Netherlands, 2010).
-
- Minic Z., Serre V. & Hervé G. Adaptation of organisms to extreme conditions of deep-sea hydrothermal vents. C. R. Biol. 329, 527–540 (2006). - PubMed
-
- McMullin E. R., Bergquist D. C. & Fisher C. R. Metazoans in extreme environments: adaptations of hydrothermal vent and hydrocarbon seep fauna. Gravitational Space Res. 13, 13–24 (2007). - PubMed
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources