Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2017 Nov;9(6).
doi: 10.1002/wnan.1468. Epub 2017 Apr 11.

Magnetic resonance relaxation induced by superparamagnetic particles used as contrast agents in magnetic resonance imaging: a theoretical review

Affiliations
Review

Magnetic resonance relaxation induced by superparamagnetic particles used as contrast agents in magnetic resonance imaging: a theoretical review

Quoc Lam Vuong et al. Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2017 Nov.

Abstract

Superparamagnetic nanoparticles are used as contrast agents in magnetic resonance imaging and allow, for example, the detection of tumors or the tracking of stem cells in vivo. By producing magnetic inhomogeneities, they influence the nuclear magnetic relaxation times, which results in a darkening, on the image, of the region containing these particles. A great number of studies have been devoted to their magnetic properties, to their synthesis and to their influence on nuclear magnetic relaxation. The theoretical and fundamental understanding of the behavior of these particles is a necessary step in predicting their efficiency as contrast agents, or to be able to experimentally obtain some of their properties from a nuclear magnetic resonance measurement. Many relaxation models have been published, and choosing one of them is not always easy, many parameters and conditions have to be taken into account. Relaxation induced by superparamagnetic particles is generally attributed to an outersphere relaxation mechanism. Each model can only be used under specific conditions (motional averaging regime, static regime, high magnetic field, etc.) or for a particular sequence (Carr-Purcell-Meiboom-Gill, spin echo, free-induction decay, nuclear magnetic relaxation dispersion profile, etc.). The parameters included in the equations must be carefully interpreted. In some more complex conditions, simulations are necessary to be able to predict the relaxation rates. A good agreement is usually observed between the theoretical predictions and the experimental results, although some data still cannot be fully understood, such as the dependence of the transverse relaxation on the magnetic field. WIREs Nanomed Nanobiotechnol 2017, 9:e1468. doi: 10.1002/wnan.1468 For further resources related to this article, please visit the WIREs website.

PubMed Disclaimer

Similar articles

Cited by

MeSH terms

LinkOut - more resources