Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2017 Feb;12(2):250-258.
doi: 10.4103/1673-5374.200808.

Modulatory effects of acupuncture on brain networks in mild cognitive impairment patients

Affiliations

Modulatory effects of acupuncture on brain networks in mild cognitive impairment patients

Ting-Ting Tan et al. Neural Regen Res. 2017 Feb.

Abstract

Functional magnetic resonance imaging has been widely used to investigate the effects of acupuncture on neural activity. However, most functional magnetic resonance imaging studies have focused on acute changes in brain activation induced by acupuncture. Thus, the time course of the therapeutic effects of acupuncture remains unclear. In this study, 32 patients with amnestic mild cognitive impairment were randomly divided into two groups, where they received either Tiaoshen Yizhi acupuncture or sham acupoint acupuncture. The needles were either twirled at Tiaoshen Yizhi acupoints, including Sishencong (EX-HN1), Yintang (EX-HN3), Neiguan (PC6), Taixi (KI3), Fenglong (ST40), and Taichong (LR3), or at related sham acupoints at a depth of approximately 15 mm, an angle of ± 60°, and a rate of approximately 120 times per minute. Acupuncture was conducted for 4 consecutive weeks, five times per week, on weekdays. Resting-state functional magnetic resonance imaging indicated that connections between cognition-related regions such as the insula, dorsolateral prefrontal cortex, hippocampus, thalamus, inferior parietal lobule, and anterior cingulate cortex increased after acupuncture at Tiaoshen Yizhi acupoints. The insula, dorsolateral prefrontal cortex, and hippocampus acted as central brain hubs. Patients in the Tiaoshen Yizhi group exhibited improved cognitive performance after acupuncture. In the sham acupoint acupuncture group, connections between brain regions were dispersed, and we found no differences in cognitive function following the treatment. These results indicate that acupuncture at Tiaoshen Yizhi acupoints can regulate brain networks by increasing connectivity between cognition-related regions, thereby improving cognitive function in patients with mild cognitive impairment.

Keywords: Alzheimer's disease; Tiaoshen Yizhi; acupuncture; brain network; mild cognitive impairment; nerve regeneration; neural regeneration; neuroimaging; resting-state functional magnetic resonance imaging.

PubMed Disclaimer

Conflict of interest statement

Conflicts of interest: None declared.

Figures

Figure 1
Figure 1
Flow chart of the study procedure.
Figure 2
Figure 2
Acupoints used in the Tiaoshen Yizhi acupuncture group (A) and sham acupoint acupuncture group (B).
Figure 3
Figure 3
Brian network revealed by resting-state fMRI following acupuncture at Tiaoshen Yizhi acupoints and sham acupoints. The connectivity patterns of the resting brain networks are described as directed graphs. The arrow direction of each connecting line represents the direction of the causal influence. Only significant effective connectivity (P < 0.05) is presented in the graphs. (A) Brain network revealed by resting-state fMRI following acupuncture at Tiaoshen Yizhi acupoints. The graph shows comprehensive connections between brain regions, mainly connecting the insula, DLPFC, HIPP, thalamus, IPL, and ACC. The insula, DLPFC, and HIPP acted as central hubs. (B) Brain network revealed by resting-state fMRI following acupuncture at sham acupoints. The connections between brain regions were noncohesive with respect to those observed after acupuncture at Tiaoshen Yizhi acupoints. fMRI: Functional magnetic resonance imaging; DLPFC: dorsolateral prefrontal cortex; HIPP: hippocampus; IPL: inferior parietal lobule; ACC: anterior cingulate cortex; FG: fusiform gyrus; OFC: orbitofrontal cortex; MTG: middle temporal gyrus; PreCN: precuneus; MPFC: medial prefrontal cortex; HYPO: hypothalamus; SMA: supplementary motor area; M1: primary motor cortex; MCC: middle cingulate cortex; SI: primary somatosensory cortex.

Similar articles

Cited by

References

    1. Bai F, Zhang Z, Watson DR, Yu H, Shi Y, Yuan Y, Zang Y, Zhu C, Qian Y. Abnormal functional connectivity of hippocampus during episodic memory retrieval processing network in amnestic mild cognitive impairment. Biol Psychiatry. 2009a;65:951–958. - PubMed
    1. Bai L, Qin W, Tian J, Dong M, Pan X, Chen P, Dai J, Yang W, Liu Y. Acupuncture modulates spontaneous activities in the anticorrelated resting brain networks. Brain Res. 2009b;1279:37–49. - PubMed
    1. Bai L, Yan H, Li L, Qin W, Chen P, Liu P, Gong Q, Liu Y, Tian J. Neural specificity of acupuncture stimulation at pericardium 6: evidence from an FMRI study. J Magn Reson Imaging. 2010;31:71–77. - PubMed
    1. Bai L, Qin W, Tian J, Liu P, Li L, Chen P, Dai J, Craggs JG, von Deneen KM, Liu Y. Time-varied characteristics of acupuncture effects in fMRI studies. Hum Brain Mapp. 2009c;30:3445–3460. - PMC - PubMed
    1. Bai L, Zhang M, Chen S, Ai L, Xu M, Wang D, Wang F, Liu L, Wang F, Lao L. Characterizing acupuncture de qi in mild cognitive impairment: relations with small-world efficiency of functional brain networks. Evid Based Complement Alternat Med 2013. 2013:304804. - PMC - PubMed