Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2017 Apr 11:9:16.
doi: 10.1186/s13099-017-0166-0. eCollection 2017.

Multiple etiologies of infectious diarrhea and concurrent infections in a pediatric outpatient-based screening study in Odisha, India

Affiliations

Multiple etiologies of infectious diarrhea and concurrent infections in a pediatric outpatient-based screening study in Odisha, India

Arpit Kumar Shrivastava et al. Gut Pathog. .

Abstract

Background: There are multiple etiologies responsible for infectious gastroenteritis causing acute diarrhea which are often under diagnosed. Also acute diarrhea is one of the major causes of morbidity and mortality among children less than 5 years of age.

Methods: In our study, fecal samples (n = 130) were collected from children (<5 years) presenting with symptoms of acute diarrhea. Samples were screened for viral, bacterial, and parasitic etiologies. Rotavirus and Adenovirus were screened by immunochromatographic tests. Diarrheagenic Escherichia coli (EPEC, EHEC, STEC, EAEC, O157, O111), Shigella spp., Salmonella spp., Vibrio cholera, Cryptosporidium spp., and Giardia spp. were detected by gene-specific polymerase chain reaction.

Results: Escherichia coli was detected to be the major etiological agent (30.07%) followed by Rotavirus (26.15%), Shigella (23.84%), Adenovirus (4.61%), Cryptosporidium (3.07%), and Giardia (0.77%). Concurrent infections with two or more pathogens were observed in 44 of 130 (33.84%) cases with a predominant incidence particularly in <2-year-old children (65.90%) compared to children of 2-5 years age group (34.09%). An overall result showed significantly higher detection rates among children with diarrhea in both combinations of two as well as three infections concurrently (p = 0.004915 and 0.03917, respectively).

Conclusion: Suspecting possible multiple infectious etiologies and diagnosis of the right causative agent(s) can aid in a better pharmacological management of acute childhood diarrhea. It is hypothesized that in cases with concurrent infections the etiological agents might be complementing each other's strategies of pathogenesis resulting in severe diarrhea that could be studied better in experimental infections.

Keywords: Children; Co-infection; Concurrent infection; Diarrhea; Infectious diarrhea; Odisha.

PubMed Disclaimer

Figures

Fig. 1
Fig. 1
Bar graphs showing detection rates of infections with a single etiological agent among children presenting with diarrhea in comparison to non-diarrheal controls. In a 2 × 2 table analysis for comparison of proportions between cases and controls for cases with detection of a single infection, all expected values (row total X column total/grand total) were ≥5. So Chi-square analysis was recommended. Two-tailed p value by Mantel–Haenszel Chi-square test = 0.02680. For single infection with Rotavirus, at least one expected value (row total X column total/grand total) was <5. So Mid-P exact test was recommended rather than Chi-square (http://www.openepi.com). Two-tailed p value by Mid-P exact test = 0.005014. *Statistically significant.# DEC: any strain of diarrheagenic E. coli
Fig. 2
Fig. 2
Bar graphs comparing detection rates of mono-infections and co-infections among children of different age groups. Data were analyzed considering the cases with no infectious agent detection as control groups (30 cases under <2 years age group, and 26 cases under 2–5 years age group). In 2 × 2 table analysis for comparison of proportions between cases with detection of single/multiple infections in both age groups, all expected values (row total X column total/grand total) were ≥5. So Chi-square analysis was recommended. Two-tailed p value by Mantel–Haenszel Chi-square test = 0.0369 for single infections. Two-tailed p value was 0.2158 for multiple infections. When the data were compared between singe vs multiple infections under both age groups, the two-tailed p value was 0.3235. *Statistically significant

References

    1. Walker CLF, Rudan I, Liu L, Nair H, Theodoratou E, Bhutta ZA, et al. Global burden of childhood diarrhoea and pneumonia. Lancet. 2013;381:1405–1416. doi: 10.1016/S0140-6736(13)60222-6. - DOI - PMC - PubMed
    1. Lakshminarayanan S, Jayalakshmy R. Diarrheal diseases among children in India: current scenario and future perspectives. J Nat Sci Biol Med. 2015;6:24. doi: 10.4103/0976-9668.149073. - DOI - PMC - PubMed
    1. Kotloff KL, Nataro JP, Blackwelder WC, Nasrin D, Farag TH, Panchalingam S, et al. Burden and aetiology of diarrhoeal disease in infants and young children in developing countries (the Global Enteric Multicenter Study, GEMS): a prospective, case-control study. Lancet. 2013;382:209–222. doi: 10.1016/S0140-6736(13)60844-2. - DOI - PubMed
    1. Kotloff KL, Blackwelder WC, Nasrin D, Nataro JP, Farag TH, Van Eijk A, et al. The Global Enteric Multicenter Study (GEMS) of diarrheal disease in infants and young children in developing countries: epidemiologic and clinical methods of the case/control study. Clin Infect Dis. 2012;55:S232. doi: 10.1093/cid/cis753. - DOI - PMC - PubMed
    1. O’Ryan M, Prado V, Pickering LK. A millennium update on pediatric diarrheal illness in the developing world. Semin Pediatr Infect Dis. 2005;16:125–136. doi: 10.1053/j.spid.2005.12.008. - DOI - PubMed