Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1988 Apr 5;200(3):593-9.
doi: 10.1016/0022-2836(88)90545-1.

Alkaline Bohr effect of human hemoglobin Ao

Affiliations

Alkaline Bohr effect of human hemoglobin Ao

E Di Cera et al. J Mol Biol. .

Abstract

Differential oxygen binding measurements obtained over the pH range 6.95 to 9.10 at 25 degrees C have allowed a detailed description of the alkaline Bohr effect of human hemoglobin Ao. Phenomenological analysis of the data in terms of the Adair equation shows that: (1) the oxygen binding curves are asymmetrical with the population of the triply oxygenated species being negligible throughout the pH range studied: (2) the shape of the oxygen binding curve is affected by pH, especially at low saturation; and (3) the maximum O2-proton linkage is -0.52 mole of proton per mole of oxygen at pH 7.4. A possible molecular mechanism of the Bohr effect is proposed within the framework of an allosteric model which accounts for the low population of triply oxygenated hemoglobin species. At least three Bohr groups are necessary for a quantitative description of the alkaline Bohr effect. Two of these groups titrate in the range of the His146 beta and Vall alpha residues, which have long been identified as the main alkaline Bohr groups, and altogether contribute 84% of the alkaline Bohr effect at physiological pH. A third ionizable group, linked to oxygenation presumably at the beta chains, is implicated and is titrated in a pH range characteristic of a surface histidyl residue.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources