Prevalence of macrolide and fluoroquinolone resistance-mediating mutations in Mycoplasma genitalium in five cities in Russia and Estonia
- PMID: 28407014
- PMCID: PMC5391023
- DOI: 10.1371/journal.pone.0175763
Prevalence of macrolide and fluoroquinolone resistance-mediating mutations in Mycoplasma genitalium in five cities in Russia and Estonia
Abstract
Background and objective: Resistance in the sexually transmitted bacterium Mycoplasma genitalium to all recommended therapeutic antimicrobials have rapidly emerged. However, to date, internationally reported resistance surveillance data for M. genitalium strains circulating in Eastern Europe are entirely lacking. The aim of this study was to estimate the prevalence of macrolide and fluoroquinolone resistance-associated mutations in M. genitalium in four cities in Russia and one in Estonia, 2013-2016.
Materials and methods: Consecutive urogenital samples found positive for M. genitalium during diagnostic testing were retrospectively analyzed for resistance-associated mutations in the 23S rRNA and parC genes using pyrosequencing and conventional Sanger sequencing, respectively.
Results: In total, 867 M. genitalium positive samples from 2013-2016 were analyzed. Macrolide resistance-associated mutations were detected in 4.6% of the samples from Russia (0.7-6.8% in different cities) and in 10% of the samples from Estonia. The mutations A2059G and A2058G were highly predominating in both Russia and Estonia, accounting together for 90.9% of the cases positive for nucleotide substitutions in the 23S rRNA gene. The rates of possible fluoroquinolone resistance-associated mutations were 6.2% in Russia (2.5-7.6% in different cities) and 5% in Estonia. The mutations S83I and S83N were the most frequent ones in Russia (24.4% each), whereas D87N highly predominated in Estonia (83.3% of all fluoroquinolone resistance-associated mutations). Approximately 1% of the samples in both countries harbored both macrolide and possible fluoroquinolone resistance-associated mutations, with A2058G and S83I being the most frequent combination (37.5%).
Conclusions: The prevalence of macrolide and fluoroquinolone resistance-associated mutations in M. genitalium was 4.6% and 6.2%, respectively, in Russia, and 10% and 5%, respectively, in Estonia. Despite the relatively low rates of macrolide and fluoroquinolone resistance in these countries, antimicrobial resistance surveillance and testing for resistance-associated mutations in M. genitalium positive cases would be valuable.
Conflict of interest statement
References
-
- Taylor-Robinson D, Jensen JS. Mycoplasma genitalium: from chrysalis to multicolored butterfly. Clin Microbiol Rev. 2011; 24: 498–514. doi: 10.1128/CMR.00006-11 - DOI - PMC - PubMed
-
- Lis R, Rowhani-Rahbar A, Manhart LE. Mycoplasma genitalium infection and female reproductive tract disease: A meta-analysis. Clin Infect Dis. 2015; 61: 418–426. doi: 10.1093/cid/civ312 - DOI - PubMed
-
- Horner PJ, Blee K, Falk L, van der Meijden W, Moi H. 2016 European guideline on the management of non-gonococcal urethritis. Int J STD AIDS. 2016; 27: 928–937. doi: 10.1177/0956462416648585 - DOI - PubMed
-
- Jensen JS, Cusini M, Gomberg M, Moi H. 2016 European guideline on Mycoplasma genitalium infections. J Eur Acad Dermatol Venereol. 2016; 30: 1650–1656. doi: 10.1111/jdv.13849 - DOI - PubMed
-
- Unemo M, Jensen JS. Antimicrobial-resistant sexually transmitted infections: gonorrhoea and Mycoplasma genitalium. Nat Rev Urol. 2017; 14: 139–152. doi: 10.1038/nrurol.2016.268 - DOI - PubMed
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources
Medical
