Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1988 Jun;2(2):1189-98.

Calcium pyrophosphate crystal deposition: the effect of monosodium urate and apatite crystals in a kinetic study using a gelatin matrix model

Affiliations
  • PMID: 2840735

Calcium pyrophosphate crystal deposition: the effect of monosodium urate and apatite crystals in a kinetic study using a gelatin matrix model

G S Mandel et al. Scanning Microsc. 1988 Jun.

Abstract

The kinetics of calcium pyrophosphate dihydrate (CPPD) crystal growth was studied by allowing calcium and pyrophosphate (PPi-4) ions to diffuse through a denatured collagen matrix (biological grade gelatin) in the presence of either monosodium urate monohydrate (MSU) or hydroxyapatite (HA) crystals. In this in vitro model system, MSU crystals significantly altered the kinetics of PPi-4 ionic diffusion through the gelatin matrix by allowing the [PPi-4] gradient to fall off much more rapidly, suggesting an increased level of scavenging of PPi-4 ions into crystalline materials. Even more significantly, the presence of MSU crystals markedly influenced the crystal growth morphology of triclinic CPPD, producing that observed in vivo. A large number of epitaxially dimensional matches between MSU and triclinic (t) and monoclinic (m) CPPD were identified, suggesting that MSU crystals can epitaxially induce CPPD crystal growth. This finding supports the hypothesis that the association of urate gout and CPPD crystal deposition disease is based on the nucleating potential of MSU crystals for CPPD crystal growth. In contrast, the HA crystal structure did not appear to serve as a nucleating agent for CPPD crystals. However, HA crystals did serve as effective traps for PPi-4 ions and their presence led to more stable CPPD crystal growth.

PubMed Disclaimer

Similar articles

Cited by

Publication types