Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2017 Jul 10;56(29):8464-8467.
doi: 10.1002/anie.201701701. Epub 2017 Apr 13.

Uncovering the Atomistic Mechanism for Calcite Step Growth

Affiliations

Uncovering the Atomistic Mechanism for Calcite Step Growth

Marco De La Pierre et al. Angew Chem Int Ed Engl. .

Abstract

Determining a complete atomic-level picture of how minerals grow from aqueous solution remains a challenge as macroscopic rates can be a convolution of many reactions. For the case of calcite (CaCO3 ) in water, computer simulations have been used to map the complex thermodynamic landscape leading to growth of the two distinct steps, acute and obtuse, on the basal surface. The carbonate ion is found to preferentially adsorb at the upper edge of acute steps while Ca2+ only adsorbs after CO32- . In contrast to the conventional picture, ion pairs prefer to bind at the upper edge of the step with only one ion, at most, coordinated to the step and lower terrace. Migration of the first carbonate ion to a growth site is found to be rate-limiting for kink nucleation, with this process having a lower activation energy on the obtuse step.

Keywords: calcite; crystal growth; free energy; molecular dynamics.

PubMed Disclaimer

Publication types

LinkOut - more resources