Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2017 Apr 14;10(1):182.
doi: 10.1186/s13071-017-2116-6.

Examining the role of macrolides and host immunity in combatting filarial parasites

Affiliations
Review

Examining the role of macrolides and host immunity in combatting filarial parasites

Doug S Carithers. Parasit Vectors. .

Abstract

Macrocyclic lactones (MLs), specifically the avermectins and milbemycins, are known for their effectiveness against a broad spectrum of disease-causing nematodes and arthropods in humans and animals. In most nematodes, drugs in this class induce paralysis, resulting in starvation, impaired ability to remain associated with their anatomical environment, and death of all life stages. Initially, this was also thought to be the ML mode of action against filarial nematodes, but researchers have not been able to validate these characteristic effects of immobilization/starvation of MLs in vitro, even at higher doses than are possible in vivo. Relatively recently, ML receptor sites exclusively located proximate to the excretory-secretory (ES) apparatus were identified in Brugia malayi microfilaria and an ML-induced suppression of secretory protein release by B. malayi microfilariae was demonstrated in vitro. It is hypothesized here that suppression of these ES proteins prevents the filarial worm from interfering with the host's complement cascade, reducing the ability of the parasite to evade the immune system. Live microfilariae and/or larvae, thus exposed, are attacked and presented to the host's innate immune mechanisms and are ultimately killed by the immune response, not the ML drug. These live, exposed filarial worms stimulate development of innate, cellular and humoral immune responses that when properly stimulated, are capable of clearing all larvae or microfilariae present in the host, regardless of their individual sensitivity to MLs. Additional research in this area can be expected to improve our understanding of the relationships among filarial worms, MLs, and the host immune system, which likely would have implications in filarial disease management in humans and animals.

Keywords: Avermectin; Brugia malayi; Brugia timori; Dirofilaria immitis; ES proteins; Excretory-secretory apparatus; Filarial worms; Immunity; Ivermectin; Macrocyclic lactones; Macrolides; Milbemycin; Onchocerca cervicalis; Onchocerca volvulus; Wuchereria bancrofti.

PubMed Disclaimer

Similar articles

Cited by

References

    1. Geary TG, Sims SM, Thomas EM, Vanover L, Davis JP, Winterrowd CA, Klein RD, Ho NF, Thompson DP. Haemonchus contortus: ivermectin-induced paralysis of the pharynx. Exp Parasitol. 1993;77:88–96. doi: 10.1006/expr.1993.1064. - DOI - PubMed
    1. Brownlee DJ, Holden-Dye L, Walker RJ. Actions of the anthelmintic ivermectin on the pharyngeal muscle of the parasitic nematode, Ascaris suum. Parasitology. 1997;115:553–61. doi: 10.1017/S0031182097001601. - DOI - PubMed
    1. Cook A, Aptel N, Portillo V, Siney E, Sihota R, Holden-Dye L, Wolstenholme A. Caenorhabditis elegans ivermectin receptors regulate locomotor behaviour and are functional orthologues of Haemonchus contortus receptors. Mol Biochem Parasitol. 2006;147:118–25. doi: 10.1016/j.molbiopara.2006.02.003. - DOI - PubMed
    1. Holden-Dye L, Walker RJ. Actions of glutamate and ivermectin on the pharyngeal muscle of Ascaridia galli: a comparative study with Caenorhabditis elegans. Int J Parasitol. 2006;36:395–402. doi: 10.1016/j.ijpara.2005.11.006. - DOI - PubMed
    1. Moreno Y, Nabhan JF, Solomon J, Mackenzie CD, Geary TG. Ivermectin disrupts the function of the excretory-secretory apparatus in microfilariae of Brugia malayi. Proc Natl Acad Sci USA. 2010;107:20120–5. - PMC - PubMed

LinkOut - more resources