Ligand diffusion in proteins via enhanced sampling in molecular dynamics
- PMID: 28410930
- DOI: 10.1016/j.plrev.2017.03.003
Ligand diffusion in proteins via enhanced sampling in molecular dynamics
Abstract
Computational simulations in biophysics describe the dynamics and functions of biological macromolecules at the atomic level. Among motions particularly important for life are the transport processes in heterogeneous media. The process of ligand diffusion inside proteins is an example of a complex rare event that can be modeled using molecular dynamics simulations. The study of physical interactions between a ligand and its biological target is of paramount importance for the design of novel drugs and enzymes. Unfortunately, the process of ligand diffusion is difficult to study experimentally. The need for identifying the ligand egress pathways and understanding how ligands migrate through protein tunnels has spurred the development of several methodological approaches to this problem. The complex topology of protein channels and the transient nature of the ligand passage pose difficulties in the modeling of the ligand entry/escape pathways by canonical molecular dynamics simulations. In this review, we report a methodology involving a reconstruction of the ligand diffusion reaction coordinates and the free-energy profiles along these reaction coordinates using enhanced sampling of conformational space. We illustrate the above methods on several ligand-protein systems, including cytochromes and G-protein-coupled receptors. The methods are general and may be adopted to other transport processes in living matter.
Keywords: Biological transport; Enhanced sampling; Free energy; Ligand diffusion; Molecular dynamics; Reaction coordinates.
Copyright © 2017 Elsevier B.V. All rights reserved.
Comment in
-
Toward more efficient simulations of slow processes in large biomolecular systems: Comment on "Ligand diffusion in proteins via enhanced sampling in molecular dynamics" by Jakub Rydzewski and Wieslaw Nowak.Phys Life Rev. 2017 Dec;22-23:75-76. doi: 10.1016/j.plrev.2017.07.003. Epub 2017 Aug 1. Phys Life Rev. 2017. PMID: 28781239 No abstract available.
-
Finding optimal paths through biomolecular mazes: Comment on: "Ligand diffusion in proteins via enhanced sampling in molecular dynamics" by J. Rydzewski and W. Nowak.Phys Life Rev. 2017 Dec;22-23:77-78. doi: 10.1016/j.plrev.2017.08.001. Epub 2017 Aug 4. Phys Life Rev. 2017. PMID: 28797667 No abstract available.
-
Ligand migration and steered molecular dynamics in drug discovery: Comment on "Ligand diffusion in proteins via enhanced sampling in molecular dynamics" by Jakub Rydzewski and Wieslaw Nowak.Phys Life Rev. 2017 Dec;22-23:79-81. doi: 10.1016/j.plrev.2017.08.006. Epub 2017 Aug 10. Phys Life Rev. 2017. PMID: 28807592 No abstract available.
-
Direct in silico visualization of ligands channelling through proteins: The next-generation frontier of computational biology: Comment on 'Ligand diffusion via enhanced sampling molecular dynamics' by Jakub Rydzewski and Wieslaw Nowak.Phys Life Rev. 2017 Dec;22-23:82-84. doi: 10.1016/j.plrev.2017.08.004. Epub 2017 Aug 10. Phys Life Rev. 2017. PMID: 28818495 No abstract available.
Similar articles
-
Memetic algorithms for ligand expulsion from protein cavities.J Chem Phys. 2015 Sep 28;143(12):124101. doi: 10.1063/1.4931181. J Chem Phys. 2015. PMID: 26428990
-
How Effectively Can Adaptive Sampling Methods Capture Spontaneous Ligand Binding?J Chem Theory Comput. 2019 Mar 12;15(3):2053-2063. doi: 10.1021/acs.jctc.8b00913. Epub 2019 Feb 4. J Chem Theory Comput. 2019. PMID: 30645108 Free PMC article.
-
Effective simulations of gas diffusion through kinetically accessible tunnels in multisubunit proteins: O2 pathways and escape routes in T-state deoxyhemoglobin.J Am Chem Soc. 2012 Jul 11;134(27):11177-84. doi: 10.1021/ja300903c. Epub 2012 Jun 26. J Am Chem Soc. 2012. PMID: 22690872
-
New approaches for computing ligand-receptor binding kinetics.Curr Opin Struct Biol. 2018 Apr;49:1-10. doi: 10.1016/j.sbi.2017.10.001. Epub 2017 Nov 11. Curr Opin Struct Biol. 2018. PMID: 29132080 Review.
-
Computational studies of transport in ion channels using metadynamics.Biochim Biophys Acta. 2016 Jul;1858(7 Pt B):1733-40. doi: 10.1016/j.bbamem.2016.02.015. Epub 2016 Feb 15. Biochim Biophys Acta. 2016. PMID: 26891818 Review.
Cited by
-
Prediction of Ligand Transport along Hydrophobic Enzyme Nanochannels.Comput Struct Biotechnol J. 2019 Jun 11;17:757-760. doi: 10.1016/j.csbj.2019.06.001. eCollection 2019. Comput Struct Biotechnol J. 2019. PMID: 31303980 Free PMC article.
-
Structural visualization of inhibitor binding in prolyl oligopeptidase.Biophys Rev (Melville). 2024 Aug 22;5(3):032105. doi: 10.1063/5.0226428. eCollection 2024 Sep. Biophys Rev (Melville). 2024. PMID: 39185456 Free PMC article.
-
Spontaneous Ligand Access Events to Membrane-Bound Cytochrome P450 2D6 Sampled at Atomic Resolution.Sci Rep. 2019 Nov 11;9(1):16411. doi: 10.1038/s41598-019-52681-w. Sci Rep. 2019. PMID: 31712722 Free PMC article.
-
Reweighted Manifold Learning of Collective Variables from Enhanced Sampling Simulations.J Chem Theory Comput. 2022 Dec 13;18(12):7179-7192. doi: 10.1021/acs.jctc.2c00873. Epub 2022 Nov 11. J Chem Theory Comput. 2022. PMID: 36367826 Free PMC article.
-
Computational Study of Protein-Ligand Unbinding for Enzyme Engineering.Front Chem. 2019 Jan 8;6:650. doi: 10.3389/fchem.2018.00650. eCollection 2018. Front Chem. 2019. PMID: 30671430 Free PMC article.
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources