Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2017 Jul-Aug;168(6):594-607.
doi: 10.1016/j.resmic.2017.03.008. Epub 2017 Apr 12.

Isolation and identification of culturable bacteria, capable of heterotrophic growth, from rapid sand filters of drinking water treatment plants

Affiliations
Free article

Isolation and identification of culturable bacteria, capable of heterotrophic growth, from rapid sand filters of drinking water treatment plants

Johanna Vandermaesen et al. Res Microbiol. 2017 Jul-Aug.
Free article

Abstract

The microbial community in sand filters (SFs) of drinking water treatment plants (DWTPs) likely contributes to SF functionalities, such as organic carbon removal through heterotrophic metabolism. However, the dynamics and functionality of the SF microbiome and microbial communities in oligotrophic freshwater environments in general, are poorly understood. Therefore, the availability of bacterial strains from these oligotrophic environments is of great interest, but such organisms are currently underrepresented in culture collections. Focusing on heterotrophic carbon metabolism, bacteria were isolated from SFs using conventional media and media that contained SF extracts to mimic the SF environment. The majority of isolates belonged to Betaproteobacteria, more specifically to the families Comamonadaceae (genera Acidovorax, Curvibacter, Hydrogenophaga, Simplicispira, Paucibacter, Pelomonas, Piscinibacter and Rhodoferax) and Oxalobacteraceae (Undibacterium). Additionally, members of Alphaproteobacteria (Mesorhizobium), Gammaproteobacteria (Aeromonas and Perlucidibaca) and Actinobacteria (Rhodococcus and Brachybacterium) were isolated. Several of those genera have only rarely been described, but appear typical inhabitants of oligotrophic freshwater environments. In this regard, the Comamonadaceae isolates are of particular interest. Our study shows that bacteria representative of oligotrophic environments can be isolated using simple isolation procedures. The isolates provide a microbial framework for extending our knowledge of the taxonomy, physiology and functionality of oligotrophic freshwater microbiomes and their interactions with possible invaders.

Keywords: Bacterial community structure; Bacterial isolates; Comamonadaceae; Culturable bacteria; Drinking water treatment; Rapid sand filters.

PubMed Disclaimer

Similar articles

Cited by

MeSH terms

LinkOut - more resources