Development and validation of Prediction models for Risks of complications in Early-onset Pre-eclampsia (PREP): a prospective cohort study
- PMID: 28412995
- PMCID: PMC5410633
- DOI: 10.3310/hta21180
Development and validation of Prediction models for Risks of complications in Early-onset Pre-eclampsia (PREP): a prospective cohort study
Abstract
Background: The prognosis of early-onset pre-eclampsia (before 34 weeks' gestation) is variable. Accurate prediction of complications is required to plan appropriate management in high-risk women.
Objective: To develop and validate prediction models for outcomes in early-onset pre-eclampsia.
Design: Prospective cohort for model development, with validation in two external data sets.
Setting: Model development: 53 obstetric units in the UK. Model transportability: PIERS (Pre-eclampsia Integrated Estimate of RiSk for mothers) and PETRA (Pre-Eclampsia TRial Amsterdam) studies.
Participants: Pregnant women with early-onset pre-eclampsia.
Sample size: Nine hundred and forty-six women in the model development data set and 850 women (634 in PIERS, 216 in PETRA) in the transportability (external validation) data sets.
Predictors: The predictors were identified from systematic reviews of tests to predict complications in pre-eclampsia and were prioritised by Delphi survey.
Main outcome measures: The primary outcome was the composite of adverse maternal outcomes established using Delphi surveys. The secondary outcome was the composite of fetal and neonatal complications.
Analysis: We developed two prediction models: a logistic regression model (PREP-L) to assess the overall risk of any maternal outcome until postnatal discharge and a survival analysis model (PREP-S) to obtain individual risk estimates at daily intervals from diagnosis until 34 weeks. Shrinkage was used to adjust for overoptimism of predictor effects. For internal validation (of the full models in the development data) and external validation (of the reduced models in the transportability data), we computed the ability of the models to discriminate between those with and without poor outcomes (c-statistic), and the agreement between predicted and observed risk (calibration slope).
Results: The PREP-L model included maternal age, gestational age at diagnosis, medical history, systolic blood pressure, urine protein-to-creatinine ratio, platelet count, serum urea concentration, oxygen saturation, baseline treatment with antihypertensive drugs and administration of magnesium sulphate. The PREP-S model additionally included exaggerated tendon reflexes and serum alanine aminotransaminase and creatinine concentration. Both models showed good discrimination for maternal complications, with anoptimism-adjusted c-statistic of 0.82 [95% confidence interval (CI) 0.80 to 0.84] for PREP-L and 0.75 (95% CI 0.73 to 0.78) for the PREP-S model in the internal validation. External validation of the reduced PREP-L model showed good performance with a c-statistic of 0.81 (95% CI 0.77 to 0.85) in PIERS and 0.75 (95% CI 0.64 to 0.86) in PETRA cohorts for maternal complications, and calibrated well with slopes of 0.93 (95% CI 0.72 to 1.10) and 0.90 (95% CI 0.48 to 1.32), respectively. In the PIERS data set, the reduced PREP-S model had a c-statistic of 0.71 (95% CI 0.67 to 0.75) and a calibration slope of 0.67 (95% CI 0.56 to 0.79). Low gestational age at diagnosis, high urine protein-to-creatinine ratio, increased serum urea concentration, treatment with antihypertensive drugs, magnesium sulphate, abnormal uterine artery Doppler scan findings and estimated fetal weight below the 10th centile were associated with fetal complications.
Conclusions: The PREP-L model provided individualised risk estimates in early-onset pre-eclampsia to plan management of high- or low-risk individuals. The PREP-S model has the potential to be used as a triage tool for risk assessment. The impacts of the model use on outcomes need further evaluation.
Trial registration: Current Controlled Trials ISRCTN40384046.
Funding: The National Institute for Health Research Health Technology Assessment programme.
Similar articles
-
Prediction of complications in early-onset pre-eclampsia (PREP): development and external multinational validation of prognostic models.BMC Med. 2017 Mar 30;15(1):68. doi: 10.1186/s12916-017-0827-3. BMC Med. 2017. PMID: 28356148 Free PMC article.
-
Validation and development of models using clinical, biochemical and ultrasound markers for predicting pre-eclampsia: an individual participant data meta-analysis.Health Technol Assess. 2020 Dec;24(72):1-252. doi: 10.3310/hta24720. Health Technol Assess. 2020. PMID: 33336645 Free PMC article.
-
Development and validation of prediction models for fetal growth restriction and birthweight: an individual participant data meta-analysis.Health Technol Assess. 2024 Aug;28(47):1-119. doi: 10.3310/DABW4814. Health Technol Assess. 2024. PMID: 39252507 Free PMC article.
-
Folic acid supplementation and malaria susceptibility and severity among people taking antifolate antimalarial drugs in endemic areas.Cochrane Database Syst Rev. 2022 Feb 1;2(2022):CD014217. doi: 10.1002/14651858.CD014217. Cochrane Database Syst Rev. 2022. PMID: 36321557 Free PMC article.
-
A prognostic model to guide decision-making on timing of delivery in late preterm pre-eclampsia: the PEACOCK prospective cohort study.Health Technol Assess. 2021 May;25(30):1-32. doi: 10.3310/hta25300. Health Technol Assess. 2021. PMID: 34024312 Free PMC article.
Cited by
-
Prediction of complications in early-onset pre-eclampsia (PREP): development and external multinational validation of prognostic models.BMC Med. 2017 Mar 30;15(1):68. doi: 10.1186/s12916-017-0827-3. BMC Med. 2017. PMID: 28356148 Free PMC article.
-
Revised MALT-IPI: A new predictive model that identifies high-risk patients with extranodal marginal zone lymphoma.Am J Hematol. 2022 Dec;97(12):1529-1537. doi: 10.1002/ajh.26715. Epub 2022 Sep 19. Am J Hematol. 2022. PMID: 36057138 Free PMC article.
-
Statistical risk prediction models for adverse maternal and neonatal outcomes in severe preeclampsia in a low-resource setting: proposal for a single-centre cross-sectional study at Mpilo Central Hospital, Bulawayo, Zimbabwe.BMC Res Notes. 2019 Aug 13;12(1):500. doi: 10.1186/s13104-019-4539-y. BMC Res Notes. 2019. PMID: 31409378 Free PMC article.
-
Recent advances in the diagnosis and management of pre-eclampsia.Fac Rev. 2020 Nov 16;9:10. doi: 10.12703/b/9-10. eCollection 2020. Fac Rev. 2020. PMID: 33659942 Free PMC article. Review.
-
Prediction model development of late-onset preeclampsia using machine learning-based methods.PLoS One. 2019 Aug 23;14(8):e0221202. doi: 10.1371/journal.pone.0221202. eCollection 2019. PLoS One. 2019. PMID: 31442238 Free PMC article.
Publication types
MeSH terms
Associated data
Grants and funding
LinkOut - more resources
Full Text Sources
Other Literature Sources
Medical
Miscellaneous