Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2017 Jun 1:75:699-705.
doi: 10.1016/j.msec.2017.02.103. Epub 2017 Feb 24.

Fabrication of novel biodegradable porous bone scaffolds based on amphiphilic hydroxyapatite nanorods

Affiliations

Fabrication of novel biodegradable porous bone scaffolds based on amphiphilic hydroxyapatite nanorods

Xiaoyan Zheng et al. Mater Sci Eng C Mater Biol Appl. .

Abstract

This paper describes a new synthetic strategy and biological application for novel amphiphilic hydroxyapatite (HAp) nanorods. The prepared HAp nanorods were able to be dispersed in water, ethyl alcohol and cyclohexane. The co-anchoring of the multidentate ligands of PEG 20000 and hydrophobic oleic acid (OA) on the rods' surfaces endowed them with excellent amphibious properties. Utilizing amphiphilic HAp nanorods with excellent biocompatibility as the inorganic phase, human-like collagen (HLC) as the organic phase and natural genipin as the cross-linker, optimal HLC/HAp porous scaffolds (HLC: HAp=1:4, w/w) were fabricated. The compression stress and three-point bending strength of the scaffolds with pore diameters of 150 to 200μm reached approximately 3.4MPa and 5.4MPa, respectively, and their porosity was 77.35±3.75%. Cytological tests showed that HLC/HAp scaffolds could contribute to cell proliferation and differentiation. The results indicated that these novel amphiphilic HAp nanorods can be expected to become recognized as an excellent inorganic material for the porous scaffolds used in repairing bone and related applications.

Keywords: Amphiphilic; Biocompatibility; Hydroxyapatite; Porous scaffold; Synthesis.

PubMed Disclaimer