Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2017 Apr 17;14(1):25.
doi: 10.1186/s12977-017-0349-2.

Type I interferon signaling is required for the APOBEC3/Rfv3-dependent neutralizing antibody response but not innate retrovirus restriction

Affiliations

Type I interferon signaling is required for the APOBEC3/Rfv3-dependent neutralizing antibody response but not innate retrovirus restriction

Bradley S Barrett et al. Retrovirology. .

Abstract

Background: APOBEC3/Rfv3 restricts acute Friend retrovirus (FV) infection and promotes virus-specific neutralizing antibody (NAb) responses. Classical Rfv3 studies utilized FV stocks containing lactate-dehydrogenase elevating virus (LDV), a potent type I interferon inducer. Previously, we showed that APOBEC3 is required for the anti-FV activity of exogenous IFN-alpha treatment. Thus, type I interferon receptor (IFNAR) signaling may be required for the APOBEC3/Rfv3 response.

Results: To test if the APOBEC3/Rfv3 response is dependent on type I IFN signaling, we infected IFNAR knockout versus IFNAR/APOBEC3 double-knockout mice with FV/LDV or LDV-free FV, and evaluated acute FV infection and subsequent NAb titers. We show that LDV co-infection and type I IFN signaling are not required for innate APOBEC3-mediated restriction. By contrast, removal of LDV and/or type I IFN signaling abrogated the APOBEC3-dependent NAb response.

Conclusions: APOBEC3 can restrict retroviruses in a type I IFN-independent manner in vivo. By contrast, the ability of APOBEC3 to promote NAb responses is type I IFN-dependent. These findings reveal novel insights on the interplay between type I IFNs and APOBEC3 in vivo that may have implications for augmenting antiretroviral NAb responses.

Keywords: Deaminase; Friend retrovirus; IFNAR; LDV; Neutralizing antibody.

PubMed Disclaimer

Figures

Fig. 1
Fig. 1
APOBEC3/Rfv3 inhibits infectious virus release in an IFNAR KO background. a Experimental design. B6 IFNAR KO and IFNAR/mA3 dKO mice were infected with FV and samples analyzed at the indicated time points. b Infectious viremia was measured by incubating plasma onto susceptible Mus dunni cells for 2 days and determining F-MuLV proviral DNA levels. Infectious viremia was determined for both (left) FV/LDV and (right) LDV-free FV infection. The same samples in (b) were used to determine c plasma viral RNA loads by qPCR. The ratio of the log-transformed infectious titer in (b) and plasma viral loads in (c) were used to estimate d virion infectivity. Each dot corresponds to a mouse and lines correspond to mean values. The total number of mice analyzed was combined from 2 to 3 independent experiments. Data were analyzed using a 2-tailed unpaired Student’s t test, with exact p values shown. Fold-change values in statistically-significant comparisons were based on average non-log-transformed values
Fig. 2
Fig. 2
APOBEC3/Rfv3 inhibits acute FV infection of splenocytes independent of type I IFN signaling. Splenocyte FV infection levels were measured by flow cytometry using a glyco-gag specific monoclonal antibody. a Representative flow plots showing glyco-gag+ splenocytes from FV/LDV infected mice at 7 dpi. The percentage of live splenocytes that expressed glyco-gag was evaluated in b FV/LDV and c LDV-free FV infections. Each dot corresponds to a mouse and lines correspond to mean values. The total number of mice analyzed was combined from 2 to 3 independent experiments. Fold-change of mean values per cohort are shown. Data were analyzed using a 2-tailed unpaired Student’s t test, with exact p values shown
Fig. 3
Fig. 3
LDV co-infection is critical for the APOBEC3/Rfv3-dependent NAb response. B6 WT and mA3 KO mice were infected with 104 SFFU of a FV/LDV or b LDV-free FV. Plasma samples at 28 dpi were heat-inactivated and the reciprocal plasma dilution that conferred 50% neutralization was computed. Log4-transformed data are shown and used for statistical analyses. Each dot corresponds to a mouse and lines correspond to mean values. The total number of mice analyzed was combined from 2 independent experiments. Fold-change values in statistically-significant comparisons were based on median non-log-transformed values. Data were analyzed using 2-tailed unpaired Student’s t test, with p values indicated; ns, not significant (p > 0.05)
Fig. 4
Fig. 4
APOBEC3/Rfv3-dependent NAb response requires type I IFN signaling. Mice were infected with FV/LDV at two different inoculum doses: a, b 10,000 SFFU and c, d 2000 SFFU. a, c Plasma samples at 28 dpi were heat-inactivated and the reciprocal plasma dilution that conferred 50% neutralization was computed. Log4-transformed data are shown and used for statistical analyses. b, d FV-specific IgG2b/c titers were determined by endpoint-titration ELISA for mice infected with 104 SFFU of FV/LDV. Native FV virions were coated into ELISA plates and twofold dilutions of plasma were added. IgG2b/c antibodies were detected using a combination of anti-IgG2b and anti-IgG2c conjugates. In all panels, each dot corresponds to a mouse and lines correspond to mean values. The total number of mice analyzed was combined from 2 independent experiments. Data were analyzed using 2-tailed unpaired Student’s t test; ns not significant (p > 0.05)

Similar articles

Cited by

References

    1. Meager A. The interferons: characterization and application. Germany: Wiley-VCH; 2006.
    1. Santiago ML, Greene WC. The role of the Apobec3 family of cytidine deaminases in innate immunity, G-to-A hypermutation and evolution of retroviruses. In: Domingo E, Parrish CR, Holland JJ, editors. Origin and evolution of viruses. London: Academic Press; 2008. pp. 183–206.
    1. Harris RS, Dudley JP. APOBECs and virus restriction. Virology. 2015;479–480:131–145. doi: 10.1016/j.virol.2015.03.012. - DOI - PMC - PubMed
    1. Stopak KS, Chiu YL, Kropp J, Grant RM, Greene WC. Distinct patterns of cytokine regulation of APOBEC3G expression and activity in primary lymphocytes, macrophages, and dendritic cells. J Biol Chem. 2007;282:3539–3546. doi: 10.1074/jbc.M610138200. - DOI - PubMed
    1. Refsland EW, Stenglein MD, Shindo K, Albin JS, Brown WL, Harris RS. Quantitative profiling of the full APOBEC3 mRNA repertoire in lymphocytes and tissues: implications for HIV-1 restriction. Nucleic Acids Res. 2010;38:4274–4284. doi: 10.1093/nar/gkq174. - DOI - PMC - PubMed

Publication types

MeSH terms

LinkOut - more resources