Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2017 Apr 25;8(17):29233-29246.
doi: 10.18632/oncotarget.16450.

OSU-A9 inhibits pancreatic cancer cell lines by modulating p38-JAK-STAT3 signaling

Affiliations

OSU-A9 inhibits pancreatic cancer cell lines by modulating p38-JAK-STAT3 signaling

Wan-Chi Tsai et al. Oncotarget. .

Abstract

Pancreatic cancer is an aggressive malignancy that is the fourth leading cause of death worldwide. Since there is a dire need for novel and effective therapies to improve the poor survival rates of advanced pancreatic cancer patients, we analyzed the antitumor effects of OSU-A9, an indole-3-carbinol derivative, on pancreatic cancer cell lines in vitro and in vivo. OSU-A9 exhibited a stronger antitumor effect than gemcitabine on two pancreatic cancer cell lines, including gemcitabine-resistant PANC-1 cells. OSU-A9 treatment induced apoptosis, the down-regulation of Akt phosphorylation, up-regulation of p38 phosphorylation and decreased phosphorylation of JAK and STAT3. Cell migration and invasiveness assays showed that OSU-A9 reduced cancer cell aggressiveness and inhibited BxPC-3 xenograft growth in nude mice. These results suggest that OSU-A9 modulates the p38-JAK-STAT3 signaling module, thereby inducing cytotoxicity in pancreatic cancer cells. Continued evaluation of OSU-A9 as a potential therapeutic agent for pancreatic cancer thus appears warrented.

Keywords: JAK; OSU-A9; STAT3; p38; pancreatic cancer.

PubMed Disclaimer

Conflict of interest statement

CONFLICTS OF INTEREST

The authors declare no competing financial interests.

Figures

Figure 1
Figure 1. Effects of OSU-A9 on cell viability of pancreatic cancer cell lines
MTT assay analyzing the effect of OSU-A9 and gemcitabine treatment on (A) BxPC-3 and (B) PANC-1 cell viability. (C) Trypan Blue exclusion assay to determine cell viability of BxPC-3 and PANC-1 cell lines treated with OSU-A9 for 24 h. Data are presented as mean ± S.D. from three individual experiments. * P < 0.05, ** P < 0.01, *** P < 0.001 compared to the control group.
Figure 2
Figure 2. OSU-A9 induces apoptosis in BxPC-3 and PANC-1 cell lines
Histograms showing quantitation of cell apoptosis in (A, top left panel) BxPC-3 and (B, bottom left panel) PANC-1 cell lines when treated with different doses of OSU-A9. Cells were treated with OSU-A9 at the indicated concentrations for 24 h, followed by Annexin V/PI staining and FACS analysis. Fold increase in apoptosis due to increasing doses of OSU-A9 treatment of BxPC-3 (A, top right panel) and PANC-1 cell lines (B, bottom right panel) in comparison to control (control value = 1) are represented by the bar graph. Data represent mean ± SEM from six independent experiments. * P < 0.05, ** P < 0.01 compared to the control group.
Figure 3
Figure 3. Effects of OSU-A9 on Akt and MAPK signaling pathways in pancreatic cancer cell lines
Phosphorylation and expression status of Akt and MAPK signaling module (ERK, JNK, p38 and MAPKAPK2) were analyzed in BxPC-3 (left panel) and PANC-1 (right panel) cells that were treated with OSU-A9 (0-5 μM) in 5% FBS-supplemented RPMI1640 medium for 24 h. Cell lysates were immunoblotted as described in Material and Methods.
Figure 4
Figure 4. OSU-A9 down-regulates JAK-STAT3 signaling
(A) Dose-dependent effects of OSU-A9 on JAK and STAT3 phosphorylation and expression in BxPC-3 and PANC-1 cells. (B) p38 inhibitor SB203580 (SB) restores cell growth inhibited by OSU-A9 in BxPC-3 cells. Cells were treated with DMSO or OSU-A9 (5 μM) in the presence of 1, 5 or 10 μM SB for 24 h and cell viability was determined by MTT assays. Data are presented as mean ± S.D. from three individual experiments. ** P < 0.01. (C) Effects of SB203580 (SB) on the phosphorylation and expression of MAPKAPK-2, JAK and STAT3 in BxPC-3 cells. Cells were treated with DMSO or OSU-A9 (5 μM) in the presence of 1, 5 or 10 μM SB for 24 h. (D) Western blot analysis showing phosphorylation and expression of PARP, COX-2, survivin, and STAT3 in PANC-1 cells transfected with p-CMV-Flag or STAT3-CA-Flag and treated with 0-10 μM OSU-A9 for 24 h. (E) STAT3-CA partially protects against OSU-A9-mediated cytotoxicity in PANC-1 cells. Percent cell viability of PANC-1 cells expressing p-CMV-Flag or STAT3-CA-Flag treated with 0-10 μM OSU-A9 are plotted. Data are presented as mean ± S.D. from three individual experiments. ** P < 0.01, *** P < 0.001.
Figure 5
Figure 5. OSU-A9 mitigates aggressiveness of BxPC-3 and PANC-1 cells
(A) BxPC-3 and PANC-1 cell migration images following treatment with 0-3 μM OSU-A9 for 24 h. Plots showing percentages of migrating (B) and invasive (C) BxPC-3 and PANC-1 cells treated with 0-3 μM OSU-A9 for 24 h. Data are presented as mean ± S.E.M. from three individual experiments. *P < 0.05, *** P < 0.001 compared to the control group. (D) Gelatin zymography analysis showing secreted MMP-2 and MMP-9 activity for both BxPC-3 and PANC-1 cell lines treated with 0-5 μM OSU-A9 for 24 h in conditioned media. (+) and (−) are the positive and negative control for MMP-2 and MMP-9 activity, respectively. (E) Bar diagrams represent fold changes in MMP-2 and MMP-9 (control value = 1) in BxPC-3 and PANC-1cell lines treated with 0-5 μM OSU-A9 for 24 h in conditioned media. Data are presented as mean ± S.E.M. from three individual experiments. *P < 0.05, ** P < 0.01, *** P < 0.001 compared to the control group.
Figure 6
Figure 6. In vivo efficacy of OSU-A9 in BxPC-3 xenografted mice
(A) Tumor volume data plotted for mice with BxPC-3 xenografts treated with either DMSO or OSU-A9 (25 mg/kg) per day via oral gavage analyzed at different time points from 0-42 days. (B) Plot showing change in body weight of xenografted mice in the DMSO- and OSU-A9-treated groups. (C) Western blot showing phosphorylation status and expression of Akt, STAT3, p38, and MAPKAPK-2 proteins as analyzed from tumor protein extracts of 3 mice in each treatment group.

Similar articles

Cited by

References

    1. Rossi ML, Rehman AA, Gondi CS. Therapeutic options for the management of pancreatic cancer. World J Gastroenterol. 2014;20:11142–11159. - PMC - PubMed
    1. Wang F, Kumar P. The role of radiotherapy in management of pancreatic cancer. J Gastrointest Oncol. 2011;2:157–167. - PMC - PubMed
    1. Chang MC, Wong JM, Chang YT. Screening and early detection of pancreatic cancer in high risk population. World J Gastroenterol. 2014;20:2358–2364. - PMC - PubMed
    1. Weng JR, Tsai CH, Kulp SK, Chen CS. Indole-3-carbinol as a chemopreventive and anti-cancer agent. Cancer Lett. 2008;262:153–163. - PMC - PubMed
    1. Weng JR, Omar HA, Kulp SK, Chen CS. Pharmacological exploitation of indole-3-carbinol to develop potent antitumor agents. Mini Rev Med Chem. 2010;10:398–404. - PubMed

Substances