Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2017 May 16;8(20):33571-33585.
doi: 10.18632/oncotarget.16827.

Utilizing combinatorial engineering to develop Tie2 targeting antagonistic angiopoetin-2 ligands as candidates for anti-angiogenesis therapy

Affiliations

Utilizing combinatorial engineering to develop Tie2 targeting antagonistic angiopoetin-2 ligands as candidates for anti-angiogenesis therapy

Tomer Shlamkovich et al. Oncotarget. .

Abstract

In many human cancers, the receptor tyrosine kinase (RTK) Tie2 plays important roles in mediating proliferation, survival, migration and angiogenesis. Thus, molecules that could potently inhibit activation of the Tie2 receptor would have a significant impact on cancer therapy. Nevertheless, attempts to develop Tie2-targeted inhibitors have met with little success, and there is currently no FDA-approved therapeutic selectively targeting Tie2. We used a combinatorial protein engineering approach to develop a new generation of angiopoietin (Ang)2-derived Tie2 antagonists as potential cancer therapeutics and as tools to study angiogenesis. The construct for designing a yeast surface display (YSD) library of potential antagonists was an Ang2 binding domain (Ang2-BD) that retains Tie2 binding ability but prevents ligand multimerization and receptor dimerization and activation. This mutant library was then screened by quantitative high-throughput flow cytometric sorting to identify Ang2-BD variants with increased expression, stability and affinity to Tie2. The selected variants were recombinantly expressed and showed high affinity to soluble and cellular Tie2 and strongly inhibited both Tie2 phosphorylation and endothelial capillary tube formation and cell invasion compared to the parental Ang2-BD. The significance of the study lies in the insight it provides into the sequence-structure-function relationships and mechanism of action of the antagonistic Ang mutants. The approach of using a natural protein ligand as a molecular scaffold for engineering high-affinity agents can be applied to other ligands to create functional protein antagonists against additional biomedical targets.

Keywords: angiogenesis; antagonistic activity; directed evolution; protein engineering; protein-protein interactions.

PubMed Disclaimer

Conflict of interest statement

CONFLICTS OF INTEREST

The authors declare that they have no conflict of interest with respect to publication of this paper.

Figures

Figure 1
Figure 1. Screening of first- and second-generation Ang2-BD libraries against soluble Tie2
Shown is a FACS analysis of yeast expressing Ang2-BD. (A) Negative control. (B) Ang2-BDWT expression and binding of Tie2 (10 nM). (C) Ang2-BD library expression and binding of Tie2 (10 nM). (D) Ang2-BD library expression and binding of Tie2 (10 nM) after five rounds of sorting. (E) Ang2-BDC1.70 expression and binding of Tie2 (5 nM). (F) Ang2-BDC1.70 library sort expression and binding of Tie2 (5 nM). (GI) Ang2-BDC1.70 library expression and binding of Tie2 (5 nM) after sorts 1, 3 and 5, respectively. Sorts 2–5 were conducted using gates similar to the one shown in panel F.
Figure 2
Figure 2. Localization of Ang2-BD mutations
(A) The Ang2/Tie2 complex (PDB 2GY7) is shown in cartoon format with Ang2 in green and Tie2 in blue. The location of mutations in Ang2-BDC2.36 are shown as red spheres at the Cα atom and labelled accordingly. The panel on the left is rotated 90 degrees along the y-axis relative to the image on the right. (B) A close-up view of the Ang2/Tie2 binding interface highlighting the location of the six mutations. A calcium atom is shown in space filling format while the mutations are in ball-and-stick.
Figure 3
Figure 3. Binding of Ang2-BD variants to recombinant and cell-expressed human Tie2
(A) Representative SPR sensorgrams of binding of Ang2-BD variants to immobilized Tie2. The ranges of protein concentrations analyzed are indicated in parentheses: Ang2-BDWT (18.75 nM – 300 nM); Ang2BDC1.70 (6.25 nM – 100 nM); Ang2-BDC2.36 (5 nM – 80 nM); Ang2-BDC2.36 glycosylated (6.25 nM – 100 nM). (B) Binding of Ang2-BD variants to TIME cell line: 1 ×105 cells were incubated with indicated proteins (Ang2-BDWT, Ang2-BDC1.70 and Ang2-BDC2.36, red, green and blue, respectively) for 2 h at 4°C with a gentle agitation. Mean fluorescence values were determined by flow cytometry using a fluorescently labeled antibody against a FLAG epitope tag. Data shown is the average of triplicate experiments, and error bars represent standard error of the mean. *indicates P value < 0.05 for comparison of results between Ang2-BD variants at the same concentration. (C) Competitive binding assay of Ang2-BDWT, Ang2-BDC1.70 and Ang2-BDC2.36, without Ang1 (red, green and blue, respectively) and with 400 ng/ml Ang1 (pink, brown and yellow, respectively) and 1000 ng/ml Ang1 for Ang2-BDC2.36 competition (grey). *indicates P value <0.05 for comparison of results between Ang2-BD variants with and without Ang1. Data shown is the average of triplicate experiments, and error bars represent standard error of the mean.
Figure 4
Figure 4. Inhibition of Tie2 phosphorylation by Ang2-BD variants
(A) TIME cells were treated with control buffer (basal level, black), 200 ng/ml of Ang1 (green), 200 ng/ml of Ang1 and 1 μM Ang2-BDWT (brown), 1 μM Ang2-BDWT(red), 200 ng/ml of Ang1 and 1 μM Ang2-BDc2.36 (blue) and 1 μM Ang2-BDC2.36 (purple) for 15 min for Tie2 phosphorylation. (B) Cell lysates were analyzed by western blot using antibodies against pTie2, Tie2 and β-actin. # indicates P value < 0.05 for comparison of results between Ang2-BDWT and Ang2-BDC2.36; ## indicates P value < 0.01 for comparison of results between Ang1 + Ang2-BDWT and Ang2-BDWT and between Ang1 + Ang2-BDC2.36 and Ang2-BDC2.36; *indicates P value < 0.05 for comparison of results between Ang1 and Ang1 + Ang2-BDWT; **indicates P value < 0.01 for comparison of results between Ang1 and Ang1 + Ang2-BDC2.36. Data shown is the average of triplicate experiments, and error bars represent standard error of the mean.
Figure 5
Figure 5. Inhibition of tube formation in endothelial cells by Ang2-BD variants
(A) TIME cells were treated with the indicated proteins. (B) Control buffer (cells only, black), 200 ng/ml of Ang1 (green), 2 μM, 4 μM and 8 μM Ang2-BDWT (red, pink and brown respectively), 2 μM, 4 μM and 8 μM Ang2-BDC2.36 (blue, yellow and grey respectively). Tube structures were analyzed for the number of generated junctions and the total tube length. *indicates P value < 0.05 for comparison of results between cells alone and tested proteins. Data shown is the average of triplicate experiments, and error bars represent standard error of the mean. Scale bar, 500 μm.
Figure 6
Figure 6. Inhibition of endothelial cells invasiveness by Ang2-BD variants
(A) TIME cells were treated with indicated proteins in Boyden chambers. (B) Control buffer (cells only, black), 2 μM and 4 μM Ang2-BDWT (red and pink, respectively), 2 μM and 4 μM Ang2-BDC2.36 (blue and brown, respectively). The invading cells accumulated on the bottom of membrane were counted in 16 frames for each membrane and analyzed for the number of cells. *indicates P value < 0.05 for comparison of results between cells only and cells + tested proteins. Data shown is the average of triplicate experiments, and error bars represent standard error of the mean. Scale bar, 200 μm.

Similar articles

Cited by

References

    1. Strauss LG, Koczan D, Klippel S, Pan L, Cheng C, Willis S, Haberkorn U, Dimitrakopoulou-Strauss A. Impact of angiogenesis-related gene expression on the tracer kinetics of 18F-FDG in colorectal tumors. J Nucl Med. 2008;49:1238–44. - PubMed
    1. Hashizume H, Falcon BL, Kuroda T, Baluk P, Coxon A, Yu D, Bready J V, Oliner JD, McDonald DM. Complementary actions of inhibitors of angiopoietin-2 and VEGF on tumor angiogenesis and growth. Cancer Res. 2010;70:2213–23. - PMC - PubMed
    1. Davis S, Papadopoulos N, Aldrich TH, Maisonpierre PC, Huang T, Kovac L, Xu A, Leidich R, Radziejewska E, Rafique A, Goldberg J, Jain V, Bailey K, et al. Angiopoietins have distinct modular domains essential for receptor binding, dimerization and superclustering. Nat Struct Biol. 2003;10:38–44. - PubMed
    1. Fiedler U, Scharpfenecker M, Koidl S, Hegen A, Grunow V, Schmidt JM, Kriz W, Thurston G, Augustin HG. The Tie-2 ligand angiopoietin-2 is stored in and rapidly released upon stimulation from endothelial cell Weibel-Palade bodies. Blood. 2004;103:4150–6. - PubMed
    1. Sato TN, Qin Y, Kozak CA, Audus KL. Tie-1 and tie-2 define another class of putative receptor tyrosine kinase genes expressed in early embryonic vascular system. Proc Natl Acad Sci U S A. 1993;90:9355–8. - PMC - PubMed

MeSH terms