Modulation Doping of Silicon using Aluminium-induced Acceptor States in Silicon Dioxide
- PMID: 28425460
- PMCID: PMC5397979
- DOI: 10.1038/srep46703
Modulation Doping of Silicon using Aluminium-induced Acceptor States in Silicon Dioxide
Abstract
All electronic, optoelectronic or photovoltaic applications of silicon depend on controlling majority charge carriers via doping with impurity atoms. Nanoscale silicon is omnipresent in fundamental research (quantum dots, nanowires) but also approached in future technology nodes of the microelectronics industry. In general, silicon nanovolumes, irrespective of their intended purpose, suffer from effects that impede conventional doping due to fundamental physical principles such as out-diffusion, statistics of small numbers, quantum- or dielectric confinement. In analogy to the concept of modulation doping, originally invented for III-V semiconductors, we demonstrate a heterostructure modulation doping method for silicon. Our approach utilizes a specific acceptor state of aluminium atoms in silicon dioxide to generate holes as majority carriers in adjacent silicon. By relocating the dopants from silicon to silicon dioxide, Si nanoscale doping problems are circumvented. In addition, the concept of aluminium-induced acceptor states for passivating hole selective tunnelling contacts as required for high-efficiency photovoltaics is presented and corroborated by first carrier lifetime and tunnelling current measurements.
Conflict of interest statement
The authors declare no competing financial interests.
Figures




Similar articles
-
Polarization-induced hole doping in wide-band-gap uniaxial semiconductor heterostructures.Science. 2010 Jan 1;327(5961):60-4. doi: 10.1126/science.1183226. Science. 2010. PMID: 20044569
-
Molecular Electrical Doping of Organic Semiconductors: Fundamental Mechanisms and Emerging Dopant Design Rules.Acc Chem Res. 2016 Mar 15;49(3):370-8. doi: 10.1021/acs.accounts.5b00438. Epub 2016 Feb 8. Acc Chem Res. 2016. PMID: 26854611
-
Controllable molecular modulation of conductivity in silicon-based devices.J Am Chem Soc. 2009 Jul 29;131(29):10023-30. doi: 10.1021/ja9002537. J Am Chem Soc. 2009. PMID: 19569647
-
Chemical approaches for electronic doping in photovoltaic materials beyond crystalline silicon.Chem Soc Rev. 2022 Dec 12;51(24):10016-10063. doi: 10.1039/d2cs00110a. Chem Soc Rev. 2022. PMID: 36398768 Review.
-
Doping silicon nanocrystals and quantum dots.Nanoscale. 2016 Jan 28;8(4):1733-45. doi: 10.1039/c5nr04978d. Nanoscale. 2016. PMID: 26727507 Review.
Cited by
-
Boron-Incorporating Silicon Nanocrystals Embedded in SiO2: Absence of Free Carriers vs. B-Induced Defects.Sci Rep. 2017 Aug 21;7(1):8337. doi: 10.1038/s41598-017-08814-0. Sci Rep. 2017. PMID: 28827565 Free PMC article.
-
Defect-Induced Luminescence Quenching vs. Charge Carrier Generation of Phosphorus Incorporated in Silicon Nanocrystals as Function of Size.Sci Rep. 2017 Apr 13;7(1):863. doi: 10.1038/s41598-017-01001-1. Sci Rep. 2017. PMID: 28408757 Free PMC article.
-
Intrinsic ultrasmall nanoscale silicon turns n-/p-type with SiO2/Si3N4-coating.Beilstein J Nanotechnol. 2018 Aug 23;9:2255-2264. doi: 10.3762/bjnano.9.210. eCollection 2018. Beilstein J Nanotechnol. 2018. PMID: 30202694 Free PMC article.
-
Absence of free carriers in silicon nanocrystals grown from phosphorus- and boron-doped silicon-rich oxide and oxynitride.Beilstein J Nanotechnol. 2018 May 18;9:1501-1511. doi: 10.3762/bjnano.9.141. eCollection 2018. Beilstein J Nanotechnol. 2018. PMID: 29977683 Free PMC article.
References
-
- Dalpian G. M. & Chelikowsky J. R. Self-Purification in Semiconductor Nanocrystals. Phys. Rev. Lett. 96, 226802 (2006). - PubMed
-
- Cantele G. et al.. First-principles study of n- and p-doped silicon nanoclusters. Phys. Rev. B. 72, 113303 (2005).
-
- Pierre M. et al.. Single-donor ionization energies in a nanoscale CMOS channel. Nature Nanotech. 5, 133–137 (2010). - PubMed
-
- Björk M. T., Schmid H., Knoch J., Riel H. & Riess W. Donor deactivation in silicon nanostructures. Nature Nanotech. 4, 103–107 (2009). - PubMed
Publication types
LinkOut - more resources
Full Text Sources
Other Literature Sources