Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2017 May 1;56(9):5455-5464.
doi: 10.1021/acs.inorgchem.7b00513. Epub 2017 Apr 20.

Adsorption of Nitrate and Bicarbonate on Fe-(Hydr)oxide

Affiliations

Adsorption of Nitrate and Bicarbonate on Fe-(Hydr)oxide

Nancy Y Acelas et al. Inorg Chem. .

Abstract

In this work, we used density functional theory calculations to study the resulting complexes of adsorption and of inner- and outer-sphere adsorption-like of bicarbonate and nitrate over Fe-(hydr)oxide surfaces using acidic, neutral, and basic simulated pH conditions. High-spin states that follow the 5N + 1 (N is the number of Fe atoms, each having five unpaired electrons) rule are preferred. Monodentate mononuclear (MM1) surface complexes are shown to lead to the most favorable thermodynamic adsorption for both bicarbonate and nitrate with -63.91 and -28.25 kJ/mol, respectively, under neutral conditions. Our results suggest that four types of regular and charged-assisted hydrogen bonds are involved in the adsorption process; all of them can be classified as closed-shell (long-range or ionic). The formal charges induce unusually short and strong hydrogen bonds. The ability of high multiplicity states of Fe clusters to adsorb oxyanions in solvated environments arises from orbital interactions: the 4s virtual orbitals in Fe have a large affinity for the 2p-type electron pairs of oxygens.

PubMed Disclaimer

LinkOut - more resources