Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2017 Apr 20;12(4):e0175686.
doi: 10.1371/journal.pone.0175686. eCollection 2017.

Extensive alterations of blood metabolites in pediatric cerebral malaria

Affiliations

Extensive alterations of blood metabolites in pediatric cerebral malaria

Sanchit Gupta et al. PLoS One. .

Abstract

Cerebral malaria (CM) presents as an encephalopathy and is due to infection with Plasmodium falciparum. Patients are comatose, often with fever, recurrent seizures and this condition is associated with a high mortality rate. The etiology of the coma and seizures are poorly understood. Circulating small molecules and lipids have bioactive functions and alterations in their concentrations have been implicated in seizure disorders and other forms of encephalopathy. We carried out a comprehensive analysis of blood metabolites during CM to explore a biochemical basis of this encephalopathy. A paired metabolomics analysis was performed on the plasma samples of Malawian children (n = 11) during CM and at convalescence thirty days later, to identify differentially abundant molecules associated with CM. We also report plasma molecules associated with CM mortality (n = 4) compared to survival (n = 19). Plasma metabolites were identified through ultra high performance liquid chromatography/tandem mass spectrometry and gas chromatography/mass spectrometry to maximize compound detection and accuracy and then compared to a library for identification. We detected a total of 432 small molecules in the plasma and 247 metabolites were significantly differentially abundant between CM and convalescence (p < 0.05, FDR < 0.10). These represented global changes across many classes of molecules including lipids, amino acids and hemoglobin metabolites. We observed significant changes in molecules that could impact neurologic function during CM; these include increased levels of kynurenate and decreased indolepropionate, glutamate, arginine and glutamine. Moreover, 1-methylimidazoleacetate, kyurenate, arachidonic acid and dimethylarginine were associated with mortality (p < 0.05, fold change > 1.2). These results highlight the broad changes in blood chemistry during CM. We have identified metabolites that may impact central nervous system physiology and disease outcomes and can be further explored for their mechanistic roles into the pathophysiology of CM.

PubMed Disclaimer

Conflict of interest statement

Competing Interests: The authors have declared that no competing interests exist.

Figures

Fig 1
Fig 1. Hierarchical clustering of differentially abundant plasma metabolites during CM and convalescence in a paired analysis of eleven Malawian children.
A heatmap of a heirarchical clustering of 247 differentially abundant (p < 0.05, FDR < 0.10, paired t test) plasma metabolites between CM and convalescence (one month later). Unsupervised hierchical clustering segregates the samples by clinical state. The asterisk notes one child with mild malaria diagnosed during the convalescent visit.
Fig 2
Fig 2. Plasma amino acid concentrations during CM compared to convalescence.
Selected plasma amino acid concentrations during CM and at convalescence (one month later) in eleven children. (A) Enriched amino acids during CM. (B) Depleted amino acids during CM. Scatter plots show median and interquartile ranges. A Wilcoxon matched-pairs signed rank test was performed. * represents P<0.05; ** represents P<0.01.
Fig 3
Fig 3. Enrichment in fatty acids, sterols, bile acids and other lipids during CM compared to convalescence.
A bar graph of the number of differentially abundant lipids (paired t test, p-value < 0.05, FDR < 0.10) by lipid class during CM compared to convalescence (n = 11 paired samples). We found marked reduction in the number of phospholipids and lysolipids during infection and enrichment in fatty acids. * denotes data obtained from a quantitative metabolomic method (n = 8 paired samples).

Similar articles

Cited by

References

    1. WHO. World Malaria Report. Geneva, Switzerland: World Health Organization; 2015.
    1. Birbeck GL, Molyneux ME, Kaplan PW, Seydel KB, Chimalizeni YF, Kawaza K, et al. Blantyre Malaria Project Epilepsy Study (BMPES) of neurological outcomes in retinopathy-positive paediatric cerebral malaria survivors: a prospective cohort study. The Lancet Neurology. 2010;9(12):1173–81. Epub 2010/11/09. PubMed Central PMCID: PMC2988225. doi: 10.1016/S1474-4422(10)70270-2 - DOI - PMC - PubMed
    1. Idro R, Marsh K, John CC, Newton CR. Cerebral malaria: mechanisms of brain injury and strategies for improved neurocognitive outcome. Pediatr Res. 2010;68(4):267–74. PubMed Central PMCID: PMC3056312. doi: 10.1203/00006450-201011001-00524 - DOI - PMC - PubMed
    1. Grau GE, Craig AG. Cerebral malaria pathogenesis: revisiting parasite and host contributions. Future Microbiol. 2012;7(2):291–302. doi: 10.2217/fmb.11.155 - DOI - PubMed
    1. Taylor TE, Fu WJ, Carr RA, Whitten RO, Mueller JG, Fosiko NG, et al. Differentiating the pathologies of cerebral malaria by postmortem parasite counts. Nature medicine. 2004;10(2):143–5. doi: 10.1038/nm986 - DOI - PubMed