Disruption of the TWEAK/Fn14 pathway prevents 5-fluorouracil-induced diarrhea in mice
- PMID: 28428709
- PMCID: PMC5385396
- DOI: 10.3748/wjg.v23.i13.2294
Disruption of the TWEAK/Fn14 pathway prevents 5-fluorouracil-induced diarrhea in mice
Abstract
Aim: To clarify the roles of TWEAK and its receptor Fn14 in 5-fluorouracil (5-FU)-induced diarrhea.
Methods: Diarrhea was induced in wild-type (WT), Fn14 knockout (KO), and IL-13 receptor (IL-13R)α1 KO BALB/c mice using a single injection of 5-FU. Histological analysis, cytokine analysis, and flow cytometry was performed on ileal tissues and cells. Murine colon carcinoma-bearing mice were co-treated with an anti-TWEAK antibody and 5-FU. Embryonic fibroblast response to cytokines was also analyzed.
Results: 5-FU induced high Fn14 expression in epithelial cells. The severity of 5-FU-induced diarrhea was lower in Fn14 KO mice compared with WT mice. Administration of anti-TWEAK antibody reduced 5-FU-induced diarrhea without affecting the antitumor effects of 5-FU in vivo. 5-FU-induced expression of IL-13, IL-17A, TNF-α, and IFN-γ in the ileum was Fn14 dependent. The severity of 5-FU-induced diarrhea was lower in IL-13Rα1 KO mice, indicating major role for IL-13 signaling via IL-13Rα1 in pathogenesis. We found that IL-13Rα2, an IL-13 neutralizing/cell protective receptor, was strongly induced by IL-33 in vitro and in vivo. IL-13Rα2 was upregulated in the ileum of 5-FU-treated Fn14 KO mice. Thus, the deletion of Fn14 upregulated IL-13Rα2 expression, which reduced IL-13 expression and activity.
Conclusion: Disruption of the TWEAK/Fn14 pathway affects several interconnected pathways, including those associated with IL-13, IL-33, and IL-13Rα2, to attenuate 5-FU-induced intestinal side effects.
Keywords: Cancer chemotherapy; Interleukin-13; Interleukin-13 receptor α2; Interleukin-33.
Conflict of interest statement
Conflict-of-interest statement: Sezaki T, Hirata Y, Hagiwara T, Kawamura YI, Okamura T, Takanashi R, Nakano K, Tamura-Nakano M and Dohi T have no conflicts of interest to disclose. Burkly LC is an employee and stockholder of Biogen
Figures
References
-
- Burkly LC, Dohi T. The TWEAK/Fn14 pathway in tissue remodeling: for better or for worse. Adv Exp Med Biol. 2011;691:305–322. - PubMed
-
- Burkly LC, Michaelson JS, Zheng TS. TWEAK/Fn14 pathway: an immunological switch for shaping tissue responses. Immunol Rev. 2011;244:99–114. - PubMed
-
- Dohi T, Borodovsky A, Wu P, Shearstone JR, Kawashima R, Runkel L, Rajman L, Dong X, Scott ML, Michaelson JS, et al. TWEAK/Fn14 pathway: a nonredundant role in intestinal damage in mice through a TWEAK/intestinal epithelial cell axis. Gastroenterology. 2009;136:912–923. - PubMed
-
- Kawashima R, Kawamura YI, Oshio T, Son A, Yamazaki M, Hagiwara T, Okada T, Inagaki-Ohara K, Wu P, Szak S, et al. Interleukin-13 damages intestinal mucosa via TWEAK and Fn14 in mice-a pathway associated with ulcerative colitis. Gastroenterology. 2011;141:2119–2129.e8. - PubMed
-
- Dohi T, Kawashima R, Kawamura YI, Otsubo T, Hagiwara T, Amatucci A, Michaelson J, Burkly LC. Pathological activation of canonical nuclear-factor κB by synergy of tumor necrosis factor α and TNF-like weak inducer of apoptosis in mouse acute colitis. Cytokine. 2014;69:14–21. - PubMed
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources
Medical
Molecular Biology Databases
Research Materials
