Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2017 Jul;95(7):719-727.
doi: 10.1007/s00109-017-1535-3. Epub 2017 Apr 20.

Dysregulation of haematopoietic stem cell regulatory programs in acute myeloid leukaemia

Affiliations
Review

Dysregulation of haematopoietic stem cell regulatory programs in acute myeloid leukaemia

Silvia Basilico et al. J Mol Med (Berl). 2017 Jul.

Abstract

Haematopoietic stem cells (HSC) are situated at the apex of the haematopoietic differentiation hierarchy, ensuring the life-long supply of mature haematopoietic cells and forming a reservoir to replenish the haematopoietic system in case of emergency such as acute blood loss. To maintain a balanced production of all mature lineages and at the same time secure a stem cell reservoir, intricate regulatory programs have evolved to control multi-lineage differentiation and self-renewal in haematopoietic stem and progenitor cells (HSPCs). Leukaemogenic mutations commonly disrupt these regulatory programs causing a block in differentiation with simultaneous enhancement of proliferation. Here, we briefly summarize key aspects of HSPC regulatory programs, and then focus on their disruption by leukaemogenic fusion genes containing the mixed lineage leukaemia (MLL) gene. Using MLL as an example, we explore important questions of wider significance that are still under debate, including the importance of cell of origin, to what extent leukaemia oncogenes impose specific regulatory programs and the relevance of leukaemia stem cells for disease development and prognosis. Finally, we suggest that disruption of stem cell regulatory programs is likely to play an important role in many other pathologies including ageing-associated regenerative failure.

Keywords: ALL; AML; HSPC; MLL gene.

PubMed Disclaimer

Figures

Fig. 1.
Fig. 1.
Perturbation of haematopoietic development by MLL rearrangements (MLL-r). MLL-r impair self-renewal and differentiation properties of HSCs and HSPCs. MLL driven leukaemic transformation has been mainly described in HSC, CMP, GMP and CLP [31, 33, 75, 76, 81, 86, 87, 92]. MPP and LMPP progenitors are also targets of MLL transformation as cellular permissiveness might be influenced by the specific strategy used to purify HSPCs [5, 91]. Biology and prognosis of AML and ALL bearing MLL translocations depend on multiple factors: cell of origin of leukaemic transformation, type of MLL-r, oncogene delivery methods, microenvironment and secondary mutations.

References

    1. Wilson A, Laurenti E, Oser G, van der Wath RC, Blanco-Bose W, Jaworski M, Offner S, Dunant CF, Eshkind L, Bockamp E, et al. Hematopoietic stem cells reversibly switch from dormancy to self-renewal during homeostasis and repair. Cell. 2008;135:1118–1129. doi: 10.1016/j.cell.2008.10.048. - DOI - PubMed
    1. Sawai CM, Babovic S, Upadhaya S, Knapp DJ, Lavin Y, Lau CM, Goloborodko A, Feng J, Fujisaki J, Ding L, et al. Hematopoietic stem cells are the major source of multilineage hematopoiesis in adult animals. Immunity. 2016;45:597–609. doi: 10.1016/j.immuni.2016.08.007. - DOI - PMC - PubMed
    1. Busch K, Klapproth K, Barile M, Flossdorf M, Holland-Letz T, Schlenner SM, Reth M, Hofer T, Rodewald HR. Fundamental properties of unperturbed haematopoiesis from stem cells in vivo. Nature. 2015;518:542–546. doi: 10.1038/nature14242. - DOI - PubMed
    1. Sun J, Ramos A, Chapman B, Johnnidis JB, Le L, Ho YJ, Klein A, Hofmann O, Camargo FD. Clonal dynamics of native haematopoiesis. Nature. 2014;514:322–327. doi: 10.1038/nature13824. - DOI - PMC - PubMed
    1. Wilson NK, Kent DG, Buettner F, Shehata M, Macaulay IC, Calero-Nieto FJ, Sanchez Castillo M, Oedekoven CA, Diamanti E, Schulte R, et al. Combined single-cell functional and gene expression analysis resolves heterogeneity within stem cell populations. Cell Stem Cell. 2015;16:712–724. doi: 10.1016/j.stem.2015.04.004. - DOI - PMC - PubMed

MeSH terms

Substances