Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2017 May 9;8(19):30734-30741.
doi: 10.18632/oncotarget.15416.

A novel mechanism of angiotensin II-regulated placental vascular tone in the development of hypertension in preeclampsia

Affiliations

A novel mechanism of angiotensin II-regulated placental vascular tone in the development of hypertension in preeclampsia

Qinqin Gao et al. Oncotarget. .

Abstract

The present study tested the hypothesis that angiotensin II plays a role in the regulation of placental vascular tone, which contributes to hypertension in preeclampsia. Functional and molecular assays were performed in large and micro placental and non-placental vessels from humans and animals. In human placental vessels, angiotensin II induced vasoconstrictions in 78.7% vessels in 155 tests, as referenced to KCl-induced contractions. In contrast, phenylephrine only produced contractions in 3.0% of 133 tests. In non-placental vessels, phenylephrine induced contractions in 76.0% of 67 tests, whereas angiotensin II failed to produce contractions in 75 tests. Similar results were obtained in animal placental and non-placental vessels. Compared with non-placental vessels, angiotensin II receptors and β-adrenoceptors were significantly increased in placental vessels. Compared to the vessels from normal pregnancy, angiotensin II-induced vasoconstrictions were significantly reduced in preeclamptic placentas, which was associated with a decrease in angiotensin II receptors. In addition, angiotensin II and angiotensin converting enzyme in the maternal-placenta circulation in preeclampsia were increased, whereas angiotensin I and angiotensin1-7 concentrations were unchanged. The study demonstrates a selective effect of angiotensin II in maintaining placental vessel tension, which may play an important role in development of hypertension in preeclampsia.

Keywords: Pathology Section; angiotensin II; placenta vascular; preeclampsia.

PubMed Disclaimer

Conflict of interest statement

CONFLICTS OF INTEREST

There is no conflict of interest.

Figures

Figure 1
Figure 1. Angiotensin II and PE induced concentration-dependent vasoconstrictions in HPV, HUV, and HUA
A. and D., representative images of AII- and PE-mediated dose-dependent vasoconstrictions in HPV-A3 A. and HUV D.. B., C., E. and F., AII and PE induced vasoconstrictions in HPV-A1/A2 (N = 25, n = 79 for AII; N = 22, n = 71 for PE), HPV-A3 (N = 54, n = 76 for AII; N = 40, n = 62 for PE), HUV (N = 28, n = 75 for AII; N = 21, n = 67 for PE), and HUA (N = 20, n = 53 for AII; N = 23, n = 58 for PE). AII, angiotensin II; PE, phenylephrine; HPV, human placental vessels; HUV, human umbilical vein; HUA, human umbilical artery; HPV-A1/A2, first-, second-order branch of umbilical vessels in placenta (mainly the main stem villous arteries); HPV-A3, the branch of the main stem villous arteries (micro-vessels with diameter around 150 um). Error bars denote s.e.m. *P < 0.05; **P < 0.01; ***P < 0.001. N, number of participants; n, number of rings.
Figure 2
Figure 2. Angiotensin II and PE induced concentration-dependent vasoconstrictions in placenta vessels from normal and preeclamptic pregnancies
A., representative images of AII- and PE-mediated dose-dependent vasoconstrictions in HPV from preeclamptic pregnancies. B., and C., AII and PE induced vasoconstrictions in HPV-A1/A2 (N = 24, n = 46 for AII; N = 28, n = 54 for PE) and HPV-A3 (N = 23, n = 32 for AII; N = 25, n = 38 for PE) from preeclampsia. D., representative images of AII-mediated dose-dependent vasoconstrictions in HPV from normal and preeclamptic pregnancies. E., and F., AII induced concentration-dependent vasoconstrictions in HPV-A1/A2 (N = 25, n = 79 for NP; N = 24, n = 46 for P) and HPV-A3 (N = 54, n = 76 for NP; N = 23, n = 32 for P). NP, normal pregnancy; P, preeclampsia. Error bars denote s.e.m. *P < 0.05; **P < 0.01; ***P < 0.001. N, number of participants; n, number of rings.
Figure 3
Figure 3. Expressions of AII and PE receptors in placental and non-placental vessels
A., and B., mRNA and protein levels of both AT1R and AT2R in HPV (N = 21) and HUV (N = 18). C., mRNA levels of PE multifarious receptors including ADRA1A, ADRA1D, ADRA2A, ADRA2B, ADRA2C, ADRB1, and ADRB2 in HPV (N = 20) and HUV (N = 15). D., and E., mRNA and protein levels of both AT1R and AT2R in NP (N = 23) and P (N = 18) placental vessels. F., mRNA levels of PE multifarious receptors in NP and P placental vessels (N = 18/group). NP, normal pregnancy; P, preeclampsia. Error bars denote s.e.m. *P < 0.05; **P < 0.01; ***P < 0.001. N, number of participants.
Figure 4
Figure 4. Levels of RAS components (including AI A. and B., AII C. and D., Ang1-7 E. and F., and ACE G. and H., as well as epinephrine E. I. and J.), and norepinephrine (NE) K. and L. in maternal blood M., umbilical cord blood F., and placenta from normal and preeclamptic pregnancies (N = 12/group)
RAS, renin angiotensin system; AI, angiotensin I; AII, angiotensin II; Ang1-7, angiotensin1-7; ACE, angiotensin converting enzyme. NP, normal pregnancy; P, preeclampsia. Error bars denote s.e.m. *P < 0.05; **P < 0.01. N, number of participants.

References

    1. Goulopoulou S, Davidge ST. Molecular mechanisms of maternal vascular dysfunction in preeclampsia. Trends Mol Med. 2015;21:88–97. - PubMed
    1. Brennan LJ, Morton JS, Davidge ST. Vascular dysfunction in preeclampsia. Microcirculation. 2014;21:4–14. - PubMed
    1. Shah DA, Khalil RA. Bioactive factors in uteroplacental and systemic circulation link placental ischemia to generalized vascular dysfunction in hypertensive pregnancy and preeclampsia. Biochem Pharmacol. 2015;95:211–26. - PMC - PubMed
    1. Powe CE, Levine RJ, Karumanchi SA. Preeclampsia, a disease of the maternal endothelium: the role of antiangiogenic factors and implications for later cardiovascular disease. Circulation. 2011;123:2856–69. - PMC - PubMed
    1. Walsh SK, English FA, Johns EJ, Kenny LC. Plasma-mediated vascular dysfunction in the reduced uterine perfusion pressure model of preeclampsia: a microvascular characterization. Hypertension. 2009;54:345–51. - PubMed

MeSH terms

LinkOut - more resources