Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2017 May 2;8(18):30552-30562.
doi: 10.18632/oncotarget.15547.

Estrogen and androgen-converting enzymes 17β-hydroxysteroid dehydrogenase and their involvement in cancer: with a special focus on 17β-hydroxysteroid dehydrogenase type 1, 2, and breast cancer

Affiliations
Review

Estrogen and androgen-converting enzymes 17β-hydroxysteroid dehydrogenase and their involvement in cancer: with a special focus on 17β-hydroxysteroid dehydrogenase type 1, 2, and breast cancer

Erik Hilborn et al. Oncotarget. .

Abstract

Sex steroid hormones such as estrogens and androgens are involved in the development and differentiation of the breast tissue. The activity and concentration of sex steroids is determined by the availability from the circulation, and on local conversion. This conversion is primarily mediated by aromatase, steroid sulfatase, and 17β-hydroxysteroid dehydrogenases. In postmenopausal women, this is the primary source of estrogens in the breast. Up to 70-80% of all breast cancers express the estrogen receptor-α, responsible for promoting the growth of the tissue. Further, 60-80% express the androgen receptor, which has been shown to have tissue protective effects in estrogen receptor positive breast cancer, and a more ambiguous response in estrogen receptor negative breast cancers. In this review, we summarize the function and clinical relevance in cancer for 17β-hydroxysteroid dehydrogenases 1, which facilitates the reduction of estrone to estradiol, dehydroepiandrosterone to androstendiol and dihydrotestosterone to 3α- and 3β-diol as well as 17β-hydroxysteroid dehydrogenases 2 which mediates the oxidation of estradiol to estrone, testosterone to androstenedione and androstendiol to dehydroepiandrosterone. The expression of 17β-hydroxysteroid dehydrogenases 1 and 2 alone and in combination has been shown to predict patient outcome, and inhibition of 17β-hydroxysteroid dehydrogenases 1 has been proposed to be a prime candidate for inhibition in patients who develop aromatase inhibitor resistance or in combination with aromatase inhibitors as a first line treatment. Here we review the status of inhibitors against 17β-hydroxysteroid dehydrogenases 1. In addition, we review the involvement of 17β-hydroxysteroid dehydrogenases 4, 5, 7, and 14 in breast cancer.

Keywords: HSD17B1; HSD17B2; androgens; breast cancer; estrogens.

PubMed Disclaimer

Conflict of interest statement

CONFLICTS OF INTEREST

There is no conflict of interest for any of the authors at the time of submission.

Figures

Figure 1
Figure 1. Schematic representation of the enzymatic conversion of sex steroids in breast tissue
DHEA = dehydroepiandrosterone. DHEA-S = dehydroepiandrosterone-sulfate. DHT = dihydrotestosterone. E1 = estrone. E2 = estradiol. E1-S = estrone–sulfate. E2-S = estradiol-sulfate. HSD3B1 = hydroxysteroid 3 beta-1. HSD17B = hydroxysteroid 17-beta dehydrogenase. STS = steroid sulfatase. SRD5A1 & 2 = steroid 5 alpha-reductase 1 and 2.

Similar articles

Cited by

References

    1. Dimitrakakis C, Bondy C. Androgens and the breast. Breast Cancer Res. 2009;11:212. doi: 10.1186/bcr2413. - DOI - PMC - PubMed
    1. Miller WL, Auchus RJ. The molecular biology, biochemistry, and physiology of human steroidogenesis and its disorders. Endocr Rev. 2011;32:81–151. doi: 10.1210/er.2010-0013. - DOI - PMC - PubMed
    1. Adamski J, Normand T, Leenders F, Monte D, Begue A, Stehelin D, Jungblut PW, de Launoit Y. Molecular cloning of a novel widely expressed human 80 kDa 17 beta-hydroxysteroid dehydrogenase IV. Biochem J. 1995;311(Pt 2):437–43. - PMC - PubMed
    1. Dufort I, Rheault P, Huang XF, Soucy P, Luu-The V. Characteristics of a highly labile human type 5 17beta-hydroxysteroid dehydrogenase. Endocrinology. 1999;140:568–74. doi: 10.1210/endo.140.2.6531. - DOI - PubMed
    1. Wu L, Einstein M, Geissler WM, Chan HK, Elliston KO, Andersson S. Expression cloning and characterization of human 17 beta-hydroxysteroid dehydrogenase type 2, a microsomal enzyme possessing 20 alpha-hydroxysteroid dehydrogenase activity. J Biol Chem. 1993;268:12964–9. - PubMed

MeSH terms