Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2018 Sep 28;19(5):1051-1068.
doi: 10.1093/bib/bbx036.

Dynamic modeling and network approaches for omics time course data: overview of computational approaches and applications

Affiliations
Review

Dynamic modeling and network approaches for omics time course data: overview of computational approaches and applications

Yulan Liang et al. Brief Bioinform. .

Abstract

Inferring networks and dynamics of genes, proteins, cells and other biological entities from high-throughput biological omics data is a central and challenging issue in computational and systems biology. This is essential for understanding the complexity of human health, disease susceptibility and pathogenesis for Predictive, Preventive, Personalized and Participatory (P4) system and precision medicine. The delineation of the possible interactions of all genes/proteins in a genome/proteome is a task for which conventional experimental techniques are ill suited. Urgently needed are rapid and inexpensive computational and statistical methods that can identify interacting candidate disease genes or drug targets out of thousands that can be further investigated or validated by experimentations. Moreover, identifying biological dynamic systems, and simultaneously estimating the important kinetic structural and functional parameters, which may not be experimentally accessible could be important directions for drug-disease-gene network studies. In this article, we present an overview and comparison of recent developments of dynamic modeling and network approaches for time-course omics data, and their applications to various biological systems, health conditions and disease statuses. Moreover, various data reduction and analytical schemes ranging from mathematical to computational to statistical methods are compared including their merits, drawbacks and limitations. The most recent software, associated web resources and other potentials for the compared methods are also presented and discussed in detail.

PubMed Disclaimer

LinkOut - more resources