Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2017 Jul 1;38(7):680-690.
doi: 10.1093/carcin/bgx036.

Developmental SALL2 transcription factor: a new player in cancer

Affiliations

Developmental SALL2 transcription factor: a new player in cancer

Viviana E Hermosilla et al. Carcinogenesis. .

Abstract

SALL2, also known as Spalt-like transcription factor 2, is a member of the SALL family of transcription factors involved in development and conserved through evolution. Since its identification in 1996, findings indicate that SALL2 plays a role in neurogenesis, neuronal differentiation and eye development. Consistently, SALL2 deficiency associates with neural tube defects and coloboma, a congenital eye disease. Relevant to cancer, clinical studies indicate that SALL2 is deregulated in various cancers and is a specific biomarker for Synovial Sarcoma. However, the significance of SALL2 deregulation in this disease is controversial. Here, we present and discuss all available information about SALL2 since its discovery, including isoforms, regulation, targets and functions. We specifically discuss the role of SALL2 in the regulation of cell proliferation and survival within the context of the identified target genes, its interaction with viral oncogenes, and its association with the TP53 tumor suppressor and MYC oncogene. Special attention is given to p53-independent SALL2 regulation of pro-apoptotic genes BAX and PMAIP1, and the implication of these findings on the apoptotic response of cancer cells to therapy. Understanding SALL2 function and the molecular mechanisms governing its expression and activity is critical to comprehend why and how SALL2 could contribute to disease. This knowledge will open new perspectives for the development of molecular targeted approaches in disease.

PubMed Disclaimer

MeSH terms