Identification and characterization of three distinct atrial natriuretic factor receptors. Evidence for tissue-specific heterogeneity of receptor subtypes in vascular smooth muscle, kidney tubular epithelium, and Leydig tumor cells by ligand binding, photoaffinity labeling, and tryptic proteolysis
- PMID: 2843519
Identification and characterization of three distinct atrial natriuretic factor receptors. Evidence for tissue-specific heterogeneity of receptor subtypes in vascular smooth muscle, kidney tubular epithelium, and Leydig tumor cells by ligand binding, photoaffinity labeling, and tryptic proteolysis
Abstract
Three distinct atrial natriuretic factor (ANF) receptors have been identified and characterized from rat thoracic aortic cultured vascular smooth muscle (RTASM) cells, kidney tubular epithelium (MDCK), and Leydig tumor (MA-10) cells. These include 1) a disulfide-linked 140-kDa protein found in RTASM cells, which was reduced by dithiothreitol (DTT) to 70 kDa, 2) a 120-135-kDa single polypeptide protein, specific to MDCK and MA-10 cells whose Mr was not reduced by DTT, and 3) a 66-70-kDa protein prevalent in both RTASM and MDCK cells, which was not reduced by DTT. After incubation of RTASM cells with 4-azidobenzoyl 125I-ANF, labeling of the 140-kDa protein was blocked by both full-length ANF(99-126) and truncated ANF103-123. In contrast, the labeling of the 120-kDa receptor in MDCK cells was blocked only by full-length ANF(99-126). However, labeling of the 68-70-kDa receptor in both RTASM and MDCK cells was blocked by full-length ANF(99-126) and truncated ANF(103-123). Binding of 125I-ANF(99-126) to RTASM and MDCK cells was rapid, specific, and saturable with a Kd of 1.5 x 10(-10) M and binding capacity (Bmax) of 2.1 x 10(5) sites/RTASM cell and Kd 4.5 x 10(-10) M and Bmax 5 x 10(4) sites/MDCK cell, respectively. Binding of 125I-ANF(99-126) to RTASM cells was displaced with both full-length ANF(99-126) and truncated ANF(103-123), however, binding to MDCK cells was efficiently displaced only with full-length ANF. Both ANF(99-126) and ANF(103-123) stimulated cGMP in RTASM cells but only ANF(99-126) elicited cGMP in MDCK cells. Tryptic proteolysis of the high Mr single chain receptor produced only a 68-kDa fragment, whereas disulfide-linked 140-kDa receptor yielded 52-, 38-, 26-, and 14-kDa fragments. These data provide direct biochemical evidence for three distinct ANF receptors which might be linked to diverse physiological functions of ANF such as natriuresis in the kidney, vasorelaxation in vascular smooth muscle, and steroidogenic responsiveness in Leydig cells.
Similar articles
-
Three distinct forms of atrial natriuretic factor receptors: kidney tubular epithelium cells and vascular smooth muscle cells contain different types of receptors.Biochem Biophys Res Commun. 1987 Sep 30;147(3):1146-52. doi: 10.1016/s0006-291x(87)80189-4. Biochem Biophys Res Commun. 1987. PMID: 2822039
-
Kidney tubular epithelium cells and vascular smooth muscle cells contain different types of atrial natriuretic factor receptors.J Hypertens Suppl. 1988 Dec;6(4):S292-4. doi: 10.1097/00004872-198812040-00090. J Hypertens Suppl. 1988. PMID: 2853738
-
Aortic smooth muscle contains guanylate-cyclase-coupled 130-kDa atrial natriuretic factor receptor as predominant receptor form. Spontaneous switching to 60-kDa C-receptor upon cell culturing.Eur J Biochem. 1993 Oct 1;217(1):295-304. doi: 10.1111/j.1432-1033.1993.tb18246.x. Eur J Biochem. 1993. PMID: 7901005
-
Atrial natriuretic factor receptor heterogeneity and stimulation of particulate guanylate cyclase and cyclic GMP accumulation.Endocrinol Metab Clin North Am. 1987 Mar;16(1):79-105. Endocrinol Metab Clin North Am. 1987. PMID: 2892671 Review.
-
Receptor regulation of atrial natriuretic factor.Blood Vessels. 1990;27(2-5):153-61. doi: 10.1159/000158806. Blood Vessels. 1990. PMID: 1978692 Review.
Cited by
-
Kinetic analysis of internalization, recycling and redistribution of atrial natriuretic factor-receptor complex in cultured vascular smooth-muscle cells. Ligand-dependent receptor down-regulation.Biochem J. 1992 Nov 15;288 ( Pt 1)(Pt 1):55-61. doi: 10.1042/bj2880055. Biochem J. 1992. PMID: 1445281 Free PMC article.
-
Expression of atrial natriuretic peptide receptor-A antagonizes the mitogen-activated protein kinases (Erk2 and P38MAPK) in cultured human vascular smooth muscle cells.Mol Cell Biochem. 2002 Apr;233(1-2):165-73. doi: 10.1023/a:1015882302796. Mol Cell Biochem. 2002. PMID: 12083372
-
Guanylyl cyclase/natriuretic peptide receptor-A: Identification, molecular characterization, and physiological genomics.Front Mol Neurosci. 2023 Jan 4;15:1076799. doi: 10.3389/fnmol.2022.1076799. eCollection 2022. Front Mol Neurosci. 2023. PMID: 36683859 Free PMC article. Review.
-
Guanylyl cyclase/natriuretic peptide receptor-A signaling antagonizes the vascular endothelial growth factor-stimulated MAPKs and downstream effectors AP-1 and CREB in mouse mesangial cells.Mol Cell Biochem. 2012 Sep;368(1-2):47-59. doi: 10.1007/s11010-012-1341-8. Epub 2012 May 19. Mol Cell Biochem. 2012. PMID: 22610792 Free PMC article.
-
Ligand-Dependent Downregulation of Guanylyl Cyclase/Natriuretic Peptide Receptor-A: Role of miR-128 and miR-195.Int J Mol Sci. 2022 Nov 2;23(21):13381. doi: 10.3390/ijms232113381. Int J Mol Sci. 2022. PMID: 36362173 Free PMC article.
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
Medical
Research Materials