Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2017 Apr 25;69(2):207-217.

[Glial cells function as neural stem cells and progenitor cells]

[Article in Chinese]
Affiliations
  • PMID: 28435980
Free article
Review

[Glial cells function as neural stem cells and progenitor cells]

[Article in Chinese]
Zi-Jian Tan et al. Sheng Li Xue Bao. .
Free article

Abstract

Glial cells, including astrocytes, oligodendrocyte progenitor cells (OPCs), NG2-glia, etc, are broadly distributed throughout the central nervous system (CNS). Also, it has been well known that glial cells play multi-roles in physiological and pathological processes in the CNS, such as maintaining homeostasis, providing neurotrophins for neurons and regulating neural signal transmission. Recently, increasing evidence showed that glial cells may also function as neural stem/progenitor cells and contribute to adult neurogenesis or neuroregeneration. In pathological conditions, for instance, astrocytes and OPCs could be activated to proliferate and differentiate. When cultured in vitro, they could form neurospheres which possess the ability to differentiate into astrocytes, oligodendrocytes and neurons. Additionally, forced expression of exogenous genes in astrocytes and NG2-glia can successfully reprogram them into neurons, which may also be suggestive of their stem/progenitor cell features. Here, we review current knowledge of the stem cell-like properties of glial cells, including what types of glial cells can function as stem/progenitor cells, how they can acquire the stem/progenitor potential and what progenies can be produced. These insights may foster a better understanding of glial cell biology and function in physiological or pathological processes in the CNS and lead to the idea of using the stem/progenitor-like glial cells as endogenous cell source for neural repair.

PubMed Disclaimer

Similar articles

Cited by

LinkOut - more resources