Pyruvate kinase M2 activation may protect against the progression of diabetic glomerular pathology and mitochondrial dysfunction
- PMID: 28436957
- PMCID: PMC5575773
- DOI: 10.1038/nm.4328
Pyruvate kinase M2 activation may protect against the progression of diabetic glomerular pathology and mitochondrial dysfunction
Abstract
Diabetic nephropathy (DN) is a major cause of end-stage renal disease, and therapeutic options for preventing its progression are limited. To identify novel therapeutic strategies, we studied protective factors for DN using proteomics on glomeruli from individuals with extreme duration of diabetes (ł50 years) without DN and those with histologic signs of DN. Enzymes in the glycolytic, sorbitol, methylglyoxal and mitochondrial pathways were elevated in individuals without DN. In particular, pyruvate kinase M2 (PKM2) expression and activity were upregulated. Mechanistically, we showed that hyperglycemia and diabetes decreased PKM2 tetramer formation and activity by sulfenylation in mouse glomeruli and cultured podocytes. Pkm-knockdown immortalized mouse podocytes had higher levels of toxic glucose metabolites, mitochondrial dysfunction and apoptosis. Podocyte-specific Pkm2-knockout (KO) mice with diabetes developed worse albuminuria and glomerular pathology. Conversely, we found that pharmacological activation of PKM2 by a small-molecule PKM2 activator, TEPP-46, reversed hyperglycemia-induced elevation in toxic glucose metabolites and mitochondrial dysfunction, partially by increasing glycolytic flux and PGC-1α mRNA in cultured podocytes. In intervention studies using DBA2/J and Nos3 (eNos) KO mouse models of diabetes, TEPP-46 treatment reversed metabolic abnormalities, mitochondrial dysfunction and kidney pathology. Thus, PKM2 activation may protect against DN by increasing glucose metabolic flux, inhibiting the production of toxic glucose metabolites and inducing mitochondrial biogenesis to restore mitochondrial function.
Figures






Comment in
-
Diabetic nephropathy: Glucose metabolic flux in DN.Nat Rev Nephrol. 2017 Jul;13(7):384. doi: 10.1038/nrneph.2017.70. Epub 2017 May 15. Nat Rev Nephrol. 2017. PMID: 28502984 No abstract available.
-
Identification of a protective proteomic signature and a potential therapeutic target in diabetic nephropathy.Kidney Int. 2017 Oct;92(4):780-781. doi: 10.1016/j.kint.2017.08.002. Kidney Int. 2017. PMID: 28938946
Similar articles
-
Characterization of Glycolytic Enzymes and Pyruvate Kinase M2 in Type 1 and 2 Diabetic Nephropathy.Diabetes Care. 2019 Jul;42(7):1263-1273. doi: 10.2337/dc18-2585. Epub 2019 May 10. Diabetes Care. 2019. PMID: 31076418 Free PMC article.
-
Pyruvate kinase M2 activation maintains mitochondrial metabolism by regulating the interaction between HIF-1α and PGC-1α in diabetic kidney disease.Mol Med. 2025 Jul 25;31(1):266. doi: 10.1186/s10020-025-01320-4. Mol Med. 2025. PMID: 40713487 Free PMC article.
-
Preservation of renal function in chronic diabetes by enhancing glomerular glucose metabolism.J Mol Med (Berl). 2018 May;96(5):373-381. doi: 10.1007/s00109-018-1630-0. Epub 2018 Mar 24. J Mol Med (Berl). 2018. PMID: 29574544 Free PMC article. Review.
-
Regeneration of glomerular metabolism and function by podocyte pyruvate kinase M2 in diabetic nephropathy.JCI Insight. 2022 Mar 8;7(5):e155260. doi: 10.1172/jci.insight.155260. JCI Insight. 2022. PMID: 35133981 Free PMC article.
-
Soluble Urokinase Receptor and the Kidney Response in Diabetes Mellitus.J Diabetes Res. 2017;2017:3232848. doi: 10.1155/2017/3232848. Epub 2017 May 17. J Diabetes Res. 2017. PMID: 28596971 Free PMC article. Review.
Cited by
-
M-type pyruvate kinase 2 (PKM2) tetramerization alleviates the progression of right ventricle failure by regulating oxidative stress and mitochondrial dynamics.J Transl Med. 2023 Dec 7;21(1):888. doi: 10.1186/s12967-023-04780-6. J Transl Med. 2023. PMID: 38062516 Free PMC article.
-
Adeno-Associated Viral Transfer of Glyoxalase-1 Blunts Carbonyl and Oxidative Stresses in Hearts of Type 1 Diabetic Rats.Antioxidants (Basel). 2020 Jul 6;9(7):592. doi: 10.3390/antiox9070592. Antioxidants (Basel). 2020. PMID: 32640624 Free PMC article.
-
Inhibition of PFKP in renal tubular epithelial cell restrains TGF-β induced glycolysis and renal fibrosis.Cell Death Dis. 2023 Dec 12;14(12):816. doi: 10.1038/s41419-023-06347-1. Cell Death Dis. 2023. PMID: 38086793 Free PMC article.
-
SGLT2 inhibitors, intrarenal hypoxia and the diabetic kidney: insights into pathophysiological concepts and current evidence.Arch Med Sci Atheroscler Dis. 2023 Dec 30;8:e155-e168. doi: 10.5114/amsad/176658. eCollection 2023. Arch Med Sci Atheroscler Dis. 2023. PMID: 38283924 Free PMC article.
-
Pyruvate kinase M2: A simple molecule with complex functions.Free Radic Biol Med. 2019 Nov 1;143:176-192. doi: 10.1016/j.freeradbiomed.2019.08.007. Epub 2019 Aug 8. Free Radic Biol Med. 2019. PMID: 31401304 Free PMC article. Review.
References
-
- United States Renal Data System. 2015 USRDS Annual Data Report. USRDS; 2015.
-
- Brownlee M. The pathobiology of diabetic complications: a unifying mechanism. Diabetes. 2005;54:1615–1625. - PubMed
-
- Nishikawa T, et al. Normalizing mitochondrial superoxide production blocks three pathways of hyperglycaemic damage. Nature. 2000;404:787–790. - PubMed
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
Other Literature Sources
Medical
Molecular Biology Databases
Research Materials
Miscellaneous