Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2017 Jun 12;18(6):1697-1704.
doi: 10.1021/acs.biomac.6b01687. Epub 2017 May 3.

Affinity Binding of EMR2 Expressing Cells by Surface-Grafted Chondroitin Sulfate B

Affiliations

Affinity Binding of EMR2 Expressing Cells by Surface-Grafted Chondroitin Sulfate B

Anouck L S Burzava et al. Biomacromolecules. .

Abstract

The propensity of glycosaminoglycans to mediate cell-cell and cell-matrix interactions opens the door to capture cells, including circulating blood cells, onto biomaterial substrates. Chondroitin sulfate (CS)-B is of particular interest, since it interacts with the receptor (EGF)-like module-containing mucin-like hormone receptor-like 2 precursor (EMR2) displayed on the surface of leukocytes and endothelial progenitor cells. Herein, CS-B and its isomer CS-A were covalently immobilized onto heptylamine plasma polymer films via three different binding chemistries to develop platform technology for the capture of EMR2 expressing cells onto solid carriers. Surface characterization verified the successful immobilization of both glycosaminoglycans. The EMR2 expressing human myeloid cell line U937 preferentially bound onto CS-B-modified substrates, and U937 cells preincubated with CS-B in solution exhibited reduced affinity for the substrate. The direct capture of hematopoietic and blood-circulating endothelial cell types via a glycosaminoglycan-binding surface receptor opens an unexplored route for the development of biomaterials targeted at these cell types.

PubMed Disclaimer

LinkOut - more resources