Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2017 Jul:108:627-643.
doi: 10.1016/j.freeradbiomed.2017.04.343. Epub 2017 Apr 22.

Antioxidants reduce neurodegeneration and accumulation of pathologic Tau proteins in the auditory system after blast exposure

Affiliations

Antioxidants reduce neurodegeneration and accumulation of pathologic Tau proteins in the auditory system after blast exposure

Xiaoping Du et al. Free Radic Biol Med. 2017 Jul.

Abstract

Cochlear neurodegeneration commonly accompanies hair cell loss resulting from aging, ototoxicity, or exposures to intense noise or blast overpressures. However, the precise pathophysiological mechanisms that drive this degenerative response have not been fully elucidated. Our laboratory previously demonstrated that non-transgenic rats exposed to blast overpressures exhibited marked somatic accumulation of neurotoxic variants of the microtubule-associated protein, Tau, in the hippocampus. In the present study, we extended these analyses to examine neurodegeneration and pathologic Tau accumulation in the auditory system in response to blast exposure and evaluated the potential therapeutic efficacy of antioxidants on short-circuiting this pathological process. Blast injury induced ribbon synapse loss and retrograde neurodegeneration in the cochlea in untreated animals. An accompanying perikaryal accumulation of neurofilament light chain and pathologic Tau oligomers were observed in neurons from both the peripheral and central auditory system, spanning from the spiral ganglion to the auditory cortex. Due to its coincident accumulation pattern and well-documented neurotoxicity, our results suggest that the accumulation of pathologic Tau oligomers may actively contribute to blast-induced cochlear neurodegeneration. Therapeutic intervention with a combinatorial regimen of 2,4-disulfonyl α-phenyl tertiary butyl nitrone (HPN-07) and N-acetylcysteine (NAC) significantly reduced both pathologic Tau accumulation and indications of ongoing neurodegeneration in the cochlea and the auditory cortex. These results demonstrate that a combination of HPN-07 and NAC administrated shortly after a blast exposure can serve as a potential therapeutic strategy for preserving auditory function among military personnel or civilians with blast-induced traumatic brain injuries.

Keywords: Antioxidants; Auditory system; Blast; Neurodegeneration; Oxidative stress; Tau protein.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources