Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2017 Apr 10;8(2):120-134.
doi: 10.5306/wjco.v8.i2.120.

Targeted therapies in breast cancer: New challenges to fight against resistance

Affiliations
Review

Targeted therapies in breast cancer: New challenges to fight against resistance

Viviana Masoud et al. World J Clin Oncol. .

Abstract

Breast cancer is the most common type of cancer found in women and today represents a significant challenge to public health. With the latest breakthroughs in molecular biology and immunotherapy, very specific targeted therapies have been tailored to the specific pathophysiology of different types of breast cancers. These recent developments have contributed to a more efficient and specific treatment protocol in breast cancer patients. However, the main challenge to be further investigated still remains the emergence of therapeutic resistance mechanisms, which develop soon after the onset of therapy and need urgent attention and further elucidation. What are the recent emerging molecular resistance mechanisms in breast cancer targeted therapy and what are the best strategies to apply in order to circumvent this important obstacle? The main scope of this review is to provide a thorough update of recent developments in the field and discuss future prospects for preventing resistance mechanisms in the quest to increase overall survival of patients suffering from the disease.

Keywords: Angiogenesis; Breast cancers; Human epidermal growth factor receptor 2; Immune tolerance; Resistance; Triple negative.

PubMed Disclaimer

Conflict of interest statement

Conflict-of-interest statement: There is no conflict of interest to declare.

Figures

Figure 1
Figure 1
A schematic diagram of the most common resistance mechanisms to targeted therapies. (1) Alteration of the drug target (Treat.): This type of resistance involves mutations as well as amplifications of drug targets such as kinases; (2) Upstream and downstream pathway effect through the activation of receptor tyrosine kinase (RTK) (a) and/or the mutation/amplification of upstream (b) or downstream (c) components; (3) Bypass mechanisms occur as a result of a second receptor tyrosine kinase activation (a), through a mutation of a parallel kinase (b) or modulation of mRNA binding proteins (c). These alternative mechanisms of resistance especially through kinases activation result in the modification of gene expression via the phosphorylation or transcription factors (TF).
Figure 2
Figure 2
Resistance mechanisms to anti-angiogenic therapy. During the initial development, tumor cells that are in the core of the tumor, become hypoxic and secrete pro-angiogenic factors (a); Proangiogenic factors are also produced by immune cells (b) and bone marrow cell participate in tumor vascularization (c); The amplification of cancer cell genome stimulates high gene expression levels, consequently, requiring an increased anti-angiogenic drug concentration (d); Tumors have evolved to switch from various modes of vascularization, in order to ensure a sufficient supply of nutrients, such as sprouting angiogenesis, vasculogenesis, vessel co-option as well as vascular mimicry (e); Various pro-angiogenic factors that are redundant of VEGF are secreted by tumor and stromal cells in malignant cancers (f); In response to the treatments, blood vessels regress (g) and tumor cell produced alternative proangiogenic prolymphangiogenic factors with the development of a lymphatic network (h); Tumor cells also express immune checkpoints proteins resulting in immune tolerance (i).

Similar articles

Cited by

References

    1. Rugo HS. Dosing and Safety Implications for Oncologists When Administering Everolimus to Patients With Hormone Receptor-Positive Breast Cancer. Clin Breast Cancer. 2016;16:18–22. - PubMed
    1. Mittendorf EA, Vila J, Tucker SL, Chavez-MacGregor M, Smith BD, Symmans WF, Sahin AA, Hortobagyi GN, Hunt KK. The Neo-Bioscore Update for Staging Breast Cancer Treated With Neoadjuvant Chemotherapy: Incorporation of Prognostic Biologic Factors Into Staging After Treatment. JAMA Oncol. 2016;2:929–936. - PMC - PubMed
    1. Mittendorf EA, Ardavanis A, Symanowski J, Murray JL, Shumway NM, Litton JK, Hale DF, Perez SA, Anastasopoulou EA, Pistamaltzian NF, et al. Primary analysis of a prospective, randomized, single-blinded phase II trial evaluating the HER2 peptide AE37 vaccine in breast cancer patients to prevent recurrence. Ann Oncol. 2016;27:1241–1248. - PMC - PubMed
    1. Clavarezza M, Puntoni M, Gennari A, Paleari L, Provinciali N, D’Amico M, DeCensi A. Dual Block with Lapatinib and Trastuzumab Versus Single-Agent Trastuzumab Combined with Chemotherapy as Neoadjuvant Treatment of HER2-Positive Breast Cancer: A Meta-analysis of Randomized Trials. Clin Cancer Res. 2016;22:4594–4603. - PubMed
    1. Rimawi MF, Schiff R, Osborne CK. Targeting HER2 for the treatment of breast cancer. Annu Rev Med. 2015;66:111–128. - PubMed