Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2017 May 23;116(11):1375-1381.
doi: 10.1038/bjc.2017.113. Epub 2017 Apr 25.

Hopefully devoted to Q: targeting glutamine addiction in cancer

Affiliations
Review

Hopefully devoted to Q: targeting glutamine addiction in cancer

Emma R Still et al. Br J Cancer. .

Erratum in

Abstract

Altered cell metabolism enables tumours to sustain their increased energetic and biosynthetic needs. Although tumour metabolism has long been considered a promising discipline in the development of cancer therapeutics, the majority of work has focused on changes in glucose metabolism. However, the complexity of cellular metabolism means that very rarely is an individual metabolite required for a single purpose, and thus understanding the overall metabolic requirements of tumours is vital. Over the past 30 years, increasing evidence has shown that many tumours require glutamine as well as glucose for their proliferation and survival. In this minireview, we explore the complexity of glutamine metabolism in tumour cells, discussing how the overall context of the tumour dictates the requirement for glutamine and how this can affect the design of effective therapeutic strategies.

PubMed Disclaimer

Conflict of interest statement

The authors declare no conflict of interest.

Figures

Figure 1
Figure 1
Glutamine is required for multiple pathways in cells. Glutamine is converted to glutamate by glutaminase. Glutamate is then converted to αKG, which can be performed by GLUD to produce ammonia, which can regulate autophagy. Alternatively, this conversion can be performed through an aminotransferase reaction to produce an amino acid as well as αKG. This αKG can be used for both the forward and reverse fluxes of the TCA cycle, and can be used to regulate TET proteins, which alter DNA methylation. Bidirectional transport of glutamine and essential amino acids controls mTOR activation and autophagy regulation. Glutamine is used in the production of glutathione, which helps maintain the redox balance. Glutamine is also required for hexosamine biosynthesis and nucleotide biosynthesis.
Figure 2
Figure 2
2D in vitro cell culture lacks many of the features of the tumour microenvironment. The majority of in vitro cell culture systems involve growing a single cell type in a 2D monolayer, in nutrient-rich medium, and at fixed oxygen and carbon dioxide levels. In the tumour, cells grow in 3D, making cell:cell contacts and interact with a number of different cell types. The surrounding immune and stromal cells also affect the nutrient availability in the tumour microenvironment, as does proximity to blood vessels. Similarly, proximity to blood vessels also dictates the amount of oxygen that a cell receives.

References

    1. Asghar W, El Assal R, Shafiee H, Pitteri S, Paulmurugan R, Demirci U (2015) Engineering cancer microenvironments for in vitro 3-D tumor models. Mater Today 18(10): 539–553. - PMC - PubMed
    1. Birsoy K, Wang T, Chen WW, Freinkman E, Abu-Remaileh M, Sabatini DM (2015) An essential role of the mitochondrial electron transport chain in cell proliferation is to enable aspartate synthesis. Cell 162(3): 540–551. - PMC - PubMed
    1. Board M, Humm S, Newsholme E (1990) Maximum activities of key enzymes of glycolysis, glutaminolysis, pentose phosphate pathway and tricarboxylic acid cycle in normal, neoplastic and suppressed cells. Biochem J 265(2): 503–509. - PMC - PubMed
    1. Bott AJ, Peng IC, Fan Y, Faubert B, Zhao L, Li J, Neidler S, Sun Y, Jaber N, Krokowski D, Lu W, Pan J-A, Powers S, Rabinowitz J, Hatzoglou M, Murphy DJ, Jones R, Wu S, Girnun G, Zong W-X (2015) Oncogenic Myc induces expression of glutamine synthetase through promoter demethylation. Cell Metab 22(6): 1068–1077. - PMC - PubMed
    1. Broer A, Rahimi F, Broer S (2016) Deletion of amino acid transporter ASCT2 (SLC1A5) reveals an essential role for transporters SNAT1 (SLC38A1) and SNAT2 (SLC38A2) to sustain glutaminolysis in cancer cells. J Biol Chem 291(25): 13194–13205. - PMC - PubMed