Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2017 Apr 11:8:533.
doi: 10.3389/fmicb.2017.00533. eCollection 2017.

Evaluation of the Probiotic Strain Bifidobacterium longum subsp. Infantis CECT 7210 Capacities to Improve Health Status and Fight Digestive Pathogens in a Piglet Model

Affiliations

Evaluation of the Probiotic Strain Bifidobacterium longum subsp. Infantis CECT 7210 Capacities to Improve Health Status and Fight Digestive Pathogens in a Piglet Model

Emili Barba-Vidal et al. Front Microbiol. .

Abstract

Probiotics have been demonstrated to be useful to enhance gut health and prevent gastrointestinal infections. The objective of this study is to demonstrate the potential of the probiotic strain Bifidobacterium longum subsp. infantis CECT 7210 (B. infantis IM1) to prevent and fight intestinal disease by using a Salmonella Typhimurium (Trial 1) or an enterotoxigenic Escherichia coli K88 (Trial 2) oral challenge in a weaning piglet model. Seventy-two piglets were used in each trial. After an adaptation period, animals were orally challenged. One animal per pen was euthanized at Days 4 and 8/9 (Trial 1/Trial 2) post-inoculation (PI). Animal performance, clinical signs, pathogen excretion, fermentation, immune response, and intestinal morphology were evaluated. In Trial 1, most parameters responded to the challenge, whereas, in Trial 2, effects were much milder. Consistent effects of the probiotic were detected in both experiments: Reduction of pathogen excretion (P = 0.043 on Day 3 PI, Trial 1) or ileal colonization (33% reduction of animals with countable coliforms; P = 0.077, Trial 2); increases in intraepithelial lymphocytes (P = 0.002 on Day 8 PI in Trial 1, P = 0.091 on Day 4 PI in Trial 2), and improvement of the fermentation profile by increasing butyric acid in non-challenged animals [P challenge × probiotic (interaction) = 0.092 in Trial 1 and P = 0.056 in Trial 2] concomitant with an enhancement of the villus:crypt ratio on Day 8/9 PI (P interaction = 0.091 for Trial 1 and P = 0.006 for Trial 2). Challenged animals treated with the probiotic showed reduced feed intakes (P interaction = 0.019 in Trial 1 and P = 0.020 in Trial 2) and had lower short-chain fatty acid concentrations in the colon (P interaction = 0.008 in Trial 1 and P = 0.082 in Trial 2). In conclusion, this probiotic demonstrated potential to reduce the intestinal colonization by pathogens and to stimulate local immune response. However, effects on feed intake, microbial fermentation, and intestinal architecture showed a differential pattern between challenged and non-challenged animals. Effects of the probiotic intervention were dependent on the structure of the ecosystem in which it was applied.

Keywords: Escherichia coli; Salmonella Typhimurium; diarrhea; infant; microbiota; pig-model; probiotic.

PubMed Disclaimer

Figures

Figure 1
Figure 1
Average daily feed intake of the post-inoculation period. Experimental days 8 to 16 (0 to 8 PI) for Trial 1: Salmonella (A) and 5 to 14 (0 to 9 PI) for Trial 2: ETEC K88 (B). ATreatments: CN, challenged + no probiotic; CP, challenged + probiotic; NN, no challenge + no probiotic; NP, no challenge + probiotic. n = 8 for groups CN and CP, n = 4 for groups NN and NP. Interactions only included when significant.
Figure 2
Figure 2
Evolution of the mean fecal scores in the different experimental groups during the post-challenge period. Experimental days 8 to 16 (0 to 7 PI) for Trial 1: Salmonella (A) and 5 to 14 (0 to 8 PI) for Trial 2: ETEC K88 (B). ATreatments: CN, challenged + no probiotic; CP, challenged + probiotic; NN, no challenge + no probiotic; NP, no challenge + probiotic. n = 8 for groups CN and CP, n = 4 for groups NN and NP. Interactions only included when significant.
Figure 3
Figure 3
Number of animals in the different range levels of fecal excretion of Salmonella at 1, 3, and 7 days post-challenge (Negative 0–102 cfu/g, Low 103–104 cfu/g, Medium 105–106 cfu/g, and High 107–108 cfu/g). CN, challenged + no probiotic; CP, challenged + probiotic. n = 8 for groups CN and CP.
Figure 4
Figure 4
Percentage of animals in ETEC K88 trial with countable plate counts of enterobacteria or coliforms in ileal scrapings (>105 CFU/g). Main effects: challenge (n = 16 for total challenged animals, n = 8 for total non-challenged animals) and probiotic (n = 12 for probiotic and control animals).

References

    1. AOAC International (1995). Official Methods of Analysis of AOAC International. Washington, DC.
    1. Arboleya S., Stanton C., Ryan C. (2016). Bosom buddies: the symbiotic relationship between infants and Bifidobacterium longum ssp. longum and ssp. infantis. genetic and probiotic features. Annu. Rev. 7, 1–21. 10.1146/annurev-food-041715-033151 - DOI - PubMed
    1. Belenguer A., Duncan S. H., Calder A. G., Holtrop G., Louis P., Lobley G. E., et al. (2006). Two routes of metabolic cross-feeding between Bifidobacterium adolescentis and butyrate-producing anaerobes from the human gut. Appl. Environ. Microbiol. 72, 3593–3599. 10.1128/AEM.72.5.3593-3599.2006 - DOI - PMC - PubMed
    1. Bertelli C., Pillonel T., Torregrossa A., Prod'hom G., Fischer C. J., Greub G., et al. (2015). Bifidobacterium longum bacteremia in preterm infants receiving probiotics. Clin. Infect. Dis. 60, 924–927. 10.1093/cid/ciu946 - DOI - PubMed
    1. Bin-Nun A., Bromiker R., Wilschanski M., Kaplan M., Rudensky B., Caplan M., et al. (2005). Oral probiotics prevent necrotizing enterocolitis in very low birth weight neonates. J. Pediatr. 147, 192–196. 10.1016/j.jpeds.2005.03.054 - DOI - PubMed