Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2017 Apr 11:8:476.
doi: 10.3389/fpls.2017.00476. eCollection 2017.

Genotyping by Sequencing for SNP-Based Linkage Analysis and Identification of QTLs Linked to Fruit Quality Traits in Japanese Plum (Prunus salicina Lindl.)

Affiliations

Genotyping by Sequencing for SNP-Based Linkage Analysis and Identification of QTLs Linked to Fruit Quality Traits in Japanese Plum (Prunus salicina Lindl.)

Juan A Salazar et al. Front Plant Sci. .

Abstract

Marker-assisted selection (MAS) in stone fruit (Prunus species) breeding is currently difficult to achieve due to the polygenic nature of the most relevant agronomic traits linked to fruit quality. Genotyping by sequencing (GBS), however, provides a large quantity of useful data suitable for fine mapping using Single Nucleotide Polymorphisms (SNPs) from a reference genome. In this study, GBS was used to genotype 272 seedlings of three F1 Japanese plum (Prunus salicina Lindl) progenies derived from crossing "98-99" (as a common female parent) with "Angeleno," "September King," and "September Queen" as male parents. Raw sequences were aligned to the Peach genome v1, and 42,909 filtered SNPs were obtained after sequence alignment. In addition, 153 seedlings from the "98-99" × "Angeleno" cross were used to develop a genetic map for each parent. A total of 981 SNPs were mapped (479 for "98-99" and 502 for "Angeleno"), covering a genetic distance of 688.8 and 647.03 cM, respectively. Fifty five seedlings from this progeny were phenotyped for different fruit quality traits including ripening time, fruit weight, fruit shape, chlorophyll index, skin color, flesh color, over color, firmness, and soluble solids content in the years 2015 and 2016. Linkage-based QTL analysis allowed the identification of genomic regions significantly associated with ripening time (LG4 of both parents and both phenotyping years), fruit skin color (LG3 and LG4 of both parents and both years), chlorophyll degradation index (LG3 of both parents in 2015) and fruit weight (LG7 of both parents in 2016). These results represent a promising situation for GBS in the identification of SNP variants associated to fruit quality traits, potentially applicable in breeding programs through MAS, in a highly heterozygous crop species such as Japanese plum.

Keywords: GBS; Japanese plum; Prunus salicina; SNP; breeding; fruit quality; molecular markers; ripening.

PubMed Disclaimer

Figures

Figure 1
Figure 1
Distribution of proportion of the 55 seedlings of “98–99” × “Angeleno” F1 Japanese plum progeny evaluated for different fruit quality traits including ripening time (Julian days), fruit weight (g), fruit shape (elongated, 1; hearted, 2; spherical, 3; oblate, 4), chlorophyll index (IAD), flesh color (white, 1; green, 2; yellow, 3; red, 4), skin color (green, 1; yellow, 2; red, 3; purple, 4; black, 5), firmness (N), over color (25%, 1; 50%, 2; 75%, 3; 100%, 4) and soluble solids content (%) in the years 2015 and 2016.
Figure 2
Figure 2
Manhattan plots calculated by General Linear Model (GLM) in TASSEL5 for the main QTLs identified linked to ripening time, skin color, fruit weight, and fruit shape in the years 2015 and 2016. Vertical axis are indicating the −Log10 (p-value) and horizontal axis are indicating the position in millions pair of bases of each SNP aligned to Peach genome v1.
Figure 3
Figure 3
Genetic maps of Japanese plum “98–99” (female) and “Angeleno” (male) and QTL identification by interval mapping analysis for two years of phenotyping: 2015 (light blue) and 2016 (dark blue). RT, Ripening time; FW, fruit weight; SHP, shape; IAD, chlorophyll index; SKC, skin color; FLSC, flesh color; OVC, over color; FIRM, firmness; SSC, soluble solids content. LOD threshold for QTL intervals: *α < 0.10, **α < 0.05, and ***α < 0.01.

Similar articles

Cited by

References

    1. Allan A. C., Hellens R. P., Laing W. A. (2008). MYB transcription factors that colour our fruit. Trends Plant Sci. 13, 99–102. 10.1016/j.tplants.2007.11.012 - DOI - PubMed
    1. Ashraf B. H., Byrne S., Fé D., Czaban A., Asp T., Pedersen M. G., et al. . (2016). Estimating genomic heritabilities at the level of progeny-pool samples of perennial ryegrass using genotyping-by-sequencing. Theor. Appl. Genet. 129, 45–52. 10.1007/s00122-015-2607-9 - DOI - PMC - PubMed
    1. Bajgain P., Rouse M. N., Tsilo T. J., Macharia G. K., Bhavani S., Jin Y., et al. . (2016). Nested association mapping of stem rust resistance in wheat using genotyping by sequencing. PLoS ONE 11:e0155760. 10.1371/journal.pone.0155760 - DOI - PMC - PubMed
    1. Ban Y., Honda C., Hatsuyama Y., Igarashi M., Bessho H., Moriguchi T. (2007). Isolation and functional analysis of a MYB transcription factor gene that is a key regulator for the development of red coloration in apple skin. Plant. Cell. Physiol. 48, 958–970. 10.1093/pcp/pcm066 - DOI - PubMed
    1. Bielenberg D. G., Rauh B., Fan S., Gasic K., Abbott A. G., Reighard G. L., et al. . (2015). Genotyping by sequencing for SNP-based linkage map construction and QTL analysis of chilling requirement and bloom date in peach [Prunus persica (L.) Batsch]. PLoS ONE 10:e0139406. 10.1371/journal.pone.0139406 - DOI - PMC - PubMed

LinkOut - more resources