Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2017 Jul;55(7):2153-2161.
doi: 10.1128/JCM.00345-17. Epub 2017 Apr 26.

Diagnostic Value of Galactomannan Antigen Test in Serum and Bronchoalveolar Lavage Fluid Samples from Patients with Nonneutropenic Invasive Pulmonary Aspergillosis

Affiliations

Diagnostic Value of Galactomannan Antigen Test in Serum and Bronchoalveolar Lavage Fluid Samples from Patients with Nonneutropenic Invasive Pulmonary Aspergillosis

Wei Zhou et al. J Clin Microbiol. 2017 Jul.

Abstract

The objective of this study was to compare the diagnostic value of galactomannan (GM) detection in bronchoalveolar lavage fluid (BALF) and serum samples from nonneutropenic patients with invasive pulmonary aspergillosis (IPA) and determine the optimal BALF GM cutoff value for pulmonary aspergillosis. GM detection in BALF and serum samples was performed by enzyme-linked immunosorbent assay (ELISA) in 128 patients with clinically suspected nonneutropenic pulmonary aspergillosis between June 2014 and June 2016. On the basis of the clinical and pathological diagnoses, 8 patients were excluded because their diagnosis was uncertain. The remaining 120 patients were diagnosed with either IPA (n = 37), community-acquired pneumonia (CAP; n = 59), noninfectious diseases (n = 19), or tuberculosis (n = 5). At a cutoff optical density index (ODI) value of ≥0.5, the sensitivity of BALF GM detection was much higher than that of serum GM detection (75.68% versus 37.84%; P = 0.001), but there was no significant difference between their specificities (80.72% versus 87.14%; P = 0.286). At a cutoff value of ≥1.0, the sensitivity of BALF GM detection was still much higher than that of serum GM detection (64.86% versus 24.32%; P < 0.001), and their specificities were similar (90.36% versus 95.71%; P = 0.202). Receiver operating characteristic (ROC) curve analysis showed that when the BALF GM detection cutoff value was 0.7, its diagnostic value for pulmonary aspergillosis was optimized, and the sensitivity and specificity reached 72.97% and 89.16%, respectively. BALF GM detection was valuable for the diagnosis of IPA in nonneutropenic patients, and its diagnostic value was superior to that of serum GM detection. The optimal BALF GM cutoff value was 0.7.

Keywords: bronchoalveolar lavage fluid; galactomannan antigen; invasive pulmonary aspergillosis; nonneutropenic patients.

PubMed Disclaimer

Figures

FIG 1
FIG 1
Study flowchart: screening and enrollment of patients. BALF, bronchoalveolar lavage fluid; GM, galactomannan.
FIG 2
FIG 2
ROC curve for bronchoalveolar lavage fluid (BALF) galactomannan (GM) detection.

Similar articles

Cited by

References

    1. Lopez-Medrano F, Silva JT, Fernandez-Ruiz M, Carver PL, van Delden C, Merino E, Pérez-Saez MJ, Montero M, Coussement J, de Abreu Mazzolin M, Cervera C, Santos L, Sabé N, Scemla A, Cordero E, Cruzado-Vega L, Martín-Moreno PL, Len Ó, Rudas E, de León AP, Arriola M, Lauzurica R, David M, González-Rico C, Henríquez-Palop F, Fortún J, Nucci M, Manuel O, Paño-Pardo JR, Montejo M, Muñoz P, Sánchez-Sobrino B, Mazuecos A, Pascual J, Horcajada JP, Lecompte T, Lumbreras C, Moreno A, Carratalà J, Blanes M, Hernández D, Hernández-Méndez EA, Fariñas MC, Perelló-Carrascosa M, Morales JM, Andrés A, Aguado JM. 2016. Risk factors associated with early invasive pulmonary aspergillosis in kidney transplant recipients: results from a multinational matched case-control study. Am J Transplant 16:2148–2157. doi:10.1111/ajt.13735. - DOI - PubMed
    1. De Pauw B, Walsh TJ, Donnelly JP, Stevens DA, Edwards JE, Calandra T, Pappas PG, Maertens J, Lortholary O, Kauffman CA, Denning DW, Patterson TF, Maschmeyer G, Bille J, Dismukes WE, Herbrecht R, Hope WW, Kibbler CC, Kullberg BJ, Marr KA, Muñoz P, Odds FC, Perfect JR, Restrepo A, Ruhnke M, Segal BH, Sobel JD, Sorrell TC, Viscoli C, Wingard JR, Zaoutis T, Bennett JE. 2008. Revised definitions of invasive fungal disease from the European Organization for Research and Treatment of Cancer/Invasive Fungal Infections Cooperative Group and the National Institute of Allergy and Infectious Diseases Mycoses Study Group (EORTC/MSG) Consensus Group. Clin Infect Dis 46:1813–1821. doi:10.1086/588660. - DOI - PMC - PubMed
    1. Pagano L, Caira M, Candoni A, Offidani M, Fianchi L, Martino B, Pastore D, Picardi M, Bonini A, Chierichini A, Fanci R, Caramatti C, Invernizzi R, Mattei D, Mitra ME, Melillo L, Aversa F, Van Lint MT, Falcucci P, Valentini CG, Girmenia C, Nosari A. 2006. The epidemiology of fungal infections in patients with hematologic malignancies: the SEIFEM-2004 study. Haematologica 91:1068–1075. - PubMed
    1. Barberan J, Mensa J. 2014. Invasive pulmonary aspergillosis in patients with chronic obstructive pulmonary disease. Rev Iberoam Micol 31:237–241. (In Spanish.) doi:10.1016/j.riam.2014.07.004. - DOI - PubMed
    1. Delsuc C, Cottereau A, Frealle E, Bienvenu AL, Dessein R, Jarraud S, Dumitrescu O, Le Maréchal M, Wallet F, Friggeri A, Argaud L, Rimmelé T, Nseir S, Ader F. 2015. Putative invasive pulmonary aspergillosis in critically ill patients with chronic obstructive pulmonary disease: a matched cohort study. Crit Care 19:421. doi:10.1186/s13054-015-1140-1. - DOI - PMC - PubMed

Publication types

LinkOut - more resources