Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2017 Apr 12:8:565.
doi: 10.3389/fpls.2017.00565. eCollection 2017.

MicroRNA and Transcription Factor: Key Players in Plant Regulatory Network

Affiliations
Review

MicroRNA and Transcription Factor: Key Players in Plant Regulatory Network

Abdul F A Samad et al. Front Plant Sci. .

Abstract

Recent achievements in plant microRNA (miRNA), a large class of small and non-coding RNAs, are very exciting. A wide array of techniques involving forward genetic, molecular cloning, bioinformatic analysis, and the latest technology, deep sequencing have greatly advanced miRNA discovery. A tiny miRNA sequence has the ability to target single/multiple mRNA targets. Most of the miRNA targets are transcription factors (TFs) which have paramount importance in regulating the plant growth and development. Various families of TFs, which have regulated a range of regulatory networks, may assist plants to grow under normal and stress environmental conditions. This present review focuses on the regulatory relationships between miRNAs and different families of TFs like; NF-Y, MYB, AP2, TCP, WRKY, NAC, GRF, and SPL. For instance NF-Y play important role during drought tolerance and flower development, MYB are involved in signal transduction and biosynthesis of secondary metabolites, AP2 regulate the floral development and nodule formation, TCP direct leaf development and growth hormones signaling. WRKY have known roles in multiple stress tolerances, NAC regulate lateral root formation, GRF are involved in root growth, flower, and seed development, and SPL regulate plant transition from juvenile to adult. We also studied the relation between miRNAs and TFs by consolidating the research findings from different plant species which will help plant scientists in understanding the mechanism of action and interaction between these regulators in the plant growth and development under normal and stress environmental conditions.

Keywords: miRNAs; plant development; plant regulators; stress response; transcription factors.

PubMed Disclaimer

Figures

FIGURE 1
FIGURE 1
Interaction between different microRNAs (miRNAs) and transcription factors (TFs) in plant development under normal condition. Interaction between miR156-SPL and miR172-AP2 leads plant transition from juvenile to adult; miR156-SPL, miR172-AP2, and miR319-TCP regulate the flowering process; miR319-TCP and miR396-GRF control leaf morphogenesis; miR169-NY-FA and miR164-NAC1 regulate root development and nodule formation, and miR166-HD ZIP III responsible for shoot apical meristem (SAM) development and organ polarity.
FIGURE 2
FIGURE 2
Interaction between different miRNAs and TFs in plant under stresses. Stresses (biotic and abiotic) induce signal transduction which led to activation of stress responsive miRNAs (miR159, miR169, miR828, miR858, miR164, miR319, and miR396) and/or their target TFs (NF-YA, MYB, NAC, WRKY, and TCP) that can affect the target genes. miRNA can regulate target gene directly (post-transcriptionally as shown with dotted line) or through TF by regulating TF (Transcriptionally as shown with solid line) that involve in the regulation of target gene. TFs can directly regulate target gene or through miRNA that involve in the regulation of target gene.

Similar articles

Cited by

References

    1. Abe M., Yoshikawa T., Nosaka M., Sakakibara H., Sato Y., Nagato Y., et al. (2010). WAVY LEAF1, an ortholog of Arabidopsis HEN1, regulates shoot development by maintaining MicroRNA and trans-acting small interfering RNA accumulation in rice. Plant Physiol. 154 1335–1346. 10.1104/pp.110.160234 - DOI - PMC - PubMed
    1. Aguilar Martinez J., Sinha N. (2013). Analysis of the role of Arabidopsis class I TCP genes AtTCP7, AtTCP8, AtTCP22, and AtTCP23 in leaf development. Front. Plant Sci. 4:406 10.3389/fpls.2013.00406 - DOI - PMC - PubMed
    1. Ahmed F., Kaundal R., Raghava G. P. (2013). PHDcleav: a SVM based method for predicting human Dicer cleavage sites using sequence and secondary structure of miRNA precursors. BMC Bioinformatics 14:S9 10.1186/1471-2105-14-s14-s9 - DOI - PMC - PubMed
    1. Akhtar M. M., Micolucci L., Islam M. S., Olivieri F., Procopio A. D. (2015). Bioinformatic tools for microRNA dissection. Nucleic Acids Res. 44 24–44. 10.1093/nar/gkv1221 - DOI - PMC - PubMed
    1. Alonso-Peral M. M., Li J., Li Y., Allen R. S., Schnippenkoetter W., Ohms S., et al. (2010). The microRNA159-regulated GAMYB-like genes inhibit growth and promote programmed cell death in Arabidopsis. Plant Physiol. 154 757–771. 10.1104/pp.110.160630 - DOI - PMC - PubMed