Changes in activities of several enzymes involved in carbohydrate metabolism during the cell cycle of Saccharomyces cerevisiae
- PMID: 2844728
- PMCID: PMC211524
- DOI: 10.1128/jb.170.10.4808-4815.1988
Changes in activities of several enzymes involved in carbohydrate metabolism during the cell cycle of Saccharomyces cerevisiae
Abstract
Activity changes of a number of enzymes involved in carbohydrate metabolism were determined in cell extracts of fractionated exponential-phase populations of Saccharomyces cerevisiae grown under excess glucose. Cell-size fractionation was achieved by an improved centrifugal elutriation procedure. Evidence that the yeast populations had been fractionated according to age in the cell cycle was obtained by examining the various cell fractions for their volume distribution and their microscopic appearance and by flow cytometric analysis of the distribution patterns of cellular DNA and protein contents. Trehalase, hexokinase, pyruvate kinase, phosphofructokinase 1, and fructose-1,6-diphosphatase showed changes in specific activities throughout the cell cycle, whereas the specific activities of alcohol dehydrogenase and glucose-6-phosphate dehydrogenase remained constant. The basal trehalase activity increased substantially (about 20-fold) with bud emergence and decreased again in binucleated cells. However, when the enzyme was activated by pretreatment of the cell extracts with cyclic AMP-dependent protein kinase, no significant fluctuations in activity were seen. These observations strongly favor posttranslational modification through phosphorylation-dephosphorylation as the mechanism underlying the periodic changes in trehalase activity during the cell cycle. As observed for trehalase, the specific activities of hexokinase and phosphofructokinase 1 rose from the beginning of bud formation onward, finally leading to more than eightfold higher values at the end of the S phase. Subsequently, the enzyme activities dropped markedly at later stages of the cycle. Pyruvate kinase activity was relatively low during the G1 phase and the S phase, but increased dramatically (more than 50-fold) during G2. In contrast to the three glycolytic enzymes investigated, the highest specific activity of the gluconeogenic enzyme fructose-1, 6-diphosphatase 1 was found in fractions enriched in either unbudded cells with a single nucleus or binucleated cells. The observed changes in enzyme activities most likely underlie pronounced alterations in carbohydrate metabolism during the cell cycle.
Similar articles
-
The effects of calcium ions on the activities of trehalase, hexokinase, phosphofructokinase, fructose diphosphatase and pyruvate kinase from various muscles.Biochem J. 1973 Mar;132(3):527-35. doi: 10.1042/bj1320527. Biochem J. 1973. PMID: 4353381 Free PMC article.
-
Changes in the activities of key enzymes of glycolysis during the cell cycle in yeast: a rectification.J Gen Microbiol. 1991 Apr;137(4):971-6. doi: 10.1099/00221287-137-4-971. J Gen Microbiol. 1991. PMID: 1856683
-
Comparative studies on the glycolytic and hexose monophosphate pathways in Candida parapsilosis and Saccharomyces cerevisiae.Arch Microbiol. 1988;149(4):324-9. doi: 10.1007/BF00411650. Arch Microbiol. 1988. PMID: 2833196
-
Regulation of trehalase activity during the cell cycle of Saccharomyces cerevisiae.J Gen Microbiol. 1988 Mar;134(3):785-90. doi: 10.1099/00221287-134-3-785. J Gen Microbiol. 1988. PMID: 3053978
-
Rat liver 6-phosphofructo 2-kinase/fructose 2,6-bisphosphatase: a review of relationships between the two activities of the enzyme.J Cell Biochem. 1984;26(1):1-17. doi: 10.1002/jcb.240260102. J Cell Biochem. 1984. PMID: 6096384 Review.
Cited by
-
Osmotic stress signaling and osmoadaptation in yeasts.Microbiol Mol Biol Rev. 2002 Jun;66(2):300-72. doi: 10.1128/MMBR.66.2.300-372.2002. Microbiol Mol Biol Rev. 2002. PMID: 12040128 Free PMC article. Review.
-
Volume growth of daughter and parent cells during the cell cycle of Saccharomyces cerevisiae a/alpha as determined by image cytometry.J Bacteriol. 1993 May;175(10):3174-81. doi: 10.1128/jb.175.10.3174-3181.1993. J Bacteriol. 1993. PMID: 8491731 Free PMC article.
-
The Yeast Cyclin-Dependent Kinase Routes Carbon Fluxes to Fuel Cell Cycle Progression.Mol Cell. 2016 May 19;62(4):532-45. doi: 10.1016/j.molcel.2016.02.017. Mol Cell. 2016. PMID: 27203178 Free PMC article.
References
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Research Materials