Detecting the impact of temperature on transmission of Zika, dengue, and chikungunya using mechanistic models
- PMID: 28448507
- PMCID: PMC5423694
- DOI: 10.1371/journal.pntd.0005568
Detecting the impact of temperature on transmission of Zika, dengue, and chikungunya using mechanistic models
Erratum in
-
Correction: Detecting the impact of temperature on transmission of Zika, dengue, and chikungunya using mechanistic models.PLoS Negl Trop Dis. 2022 Jun 2;16(6):e0010514. doi: 10.1371/journal.pntd.0010514. eCollection 2022 Jun. PLoS Negl Trop Dis. 2022. PMID: 35653363 Free PMC article.
Abstract
Recent epidemics of Zika, dengue, and chikungunya have heightened the need to understand the seasonal and geographic range of transmission by Aedes aegypti and Ae. albopictus mosquitoes. We use mechanistic transmission models to derive predictions for how the probability and magnitude of transmission for Zika, chikungunya, and dengue change with mean temperature, and we show that these predictions are well matched by human case data. Across all three viruses, models and human case data both show that transmission occurs between 18-34°C with maximal transmission occurring in a range from 26-29°C. Controlling for population size and two socioeconomic factors, temperature-dependent transmission based on our mechanistic model is an important predictor of human transmission occurrence and incidence. Risk maps indicate that tropical and subtropical regions are suitable for extended seasonal or year-round transmission, but transmission in temperate areas is limited to at most three months per year even if vectors are present. Such brief transmission windows limit the likelihood of major epidemics following disease introduction in temperate zones.
Conflict of interest statement
The authors have declared that no competing interests exist.
Figures




Similar articles
-
Seasonal temperature variation influences climate suitability for dengue, chikungunya, and Zika transmission.PLoS Negl Trop Dis. 2018 May 10;12(5):e0006451. doi: 10.1371/journal.pntd.0006451. eCollection 2018 May. PLoS Negl Trop Dis. 2018. PMID: 29746468 Free PMC article.
-
Entomological characterization of Aedes mosquitoes and arbovirus detection in Ibagué, a Colombian city with co-circulation of Zika, dengue and chikungunya viruses.Parasit Vectors. 2021 Sep 6;14(1):446. doi: 10.1186/s13071-021-04908-x. Parasit Vectors. 2021. PMID: 34488857 Free PMC article.
-
Spread of the Invasive Mosquitoes Aedes aegypti and Aedes albopictus in the Black Sea Region Increases Risk of Chikungunya, Dengue, and Zika Outbreaks in Europe.PLoS Negl Trop Dis. 2016 Apr 26;10(4):e0004664. doi: 10.1371/journal.pntd.0004664. eCollection 2016 Apr. PLoS Negl Trop Dis. 2016. PMID: 27115737 Free PMC article. No abstract available.
-
Zika, Chikungunya, and Other Emerging Vector-Borne Viral Diseases.Annu Rev Med. 2018 Jan 29;69:395-408. doi: 10.1146/annurev-med-050715-105122. Epub 2017 Aug 28. Annu Rev Med. 2018. PMID: 28846489 Free PMC article. Review.
-
Human Urban Arboviruses Can Infect Wild Animals and Jump to Sylvatic Maintenance Cycles in South America.Front Cell Infect Microbiol. 2019 Jul 17;9:259. doi: 10.3389/fcimb.2019.00259. eCollection 2019. Front Cell Infect Microbiol. 2019. PMID: 31380302 Free PMC article. Review.
Cited by
-
Evaluation of DNA-Launched Virus-Like Particle Vaccines in an Immune Competent Mouse Model of Chikungunya Virus Infection.Vaccines (Basel). 2021 Apr 2;9(4):345. doi: 10.3390/vaccines9040345. Vaccines (Basel). 2021. PMID: 33918409 Free PMC article.
-
Mosquito-Associated Viruses and Their Related Mosquitoes in West Africa.Viruses. 2021 May 12;13(5):891. doi: 10.3390/v13050891. Viruses. 2021. PMID: 34065928 Free PMC article. Review.
-
Simulated climate change, but not predation risk, accelerates Aedes aegypti emergence in a microcosm experiment in western Amazonia.PLoS One. 2020 Oct 20;15(10):e0241070. doi: 10.1371/journal.pone.0241070. eCollection 2020. PLoS One. 2020. PMID: 33079970 Free PMC article.
-
Assessment of expertise in morphological identification of mosquito species (Diptera, Culicidae) using photomicrographs.Parasite. 2022;29:45. doi: 10.1051/parasite/2022045. Epub 2022 Oct 6. Parasite. 2022. PMID: 36200781 Free PMC article.
-
Probability of dengue transmission and propagation in a non-endemic temperate area: conceptual model and decision risk levels for early alert, prevention and control.Parasit Vectors. 2019 Jan 16;12(1):38. doi: 10.1186/s13071-018-3280-z. Parasit Vectors. 2019. PMID: 30651125 Free PMC article.
References
-
- Brady OJ, Gething PW, Bhatt S, Messina JP, Brownstein JS, Hoen AG, et al. Refining the global spatial limits of dengue virus transmission by evidence-based consensus. PLOS Negl Trop Dis. 2012;6: e1760 doi: 10.1371/journal.pntd.0001760 - DOI - PMC - PubMed
-
- Bhatt S, Gething PW, Brady OJ, Messina JP, Farlow AW, Moyes CL, et al. The global distribution and burden of dengue. Nature. 2013;496: 504–507. doi: 10.1038/nature12060 - DOI - PMC - PubMed
-
- Rasmussen SA, Jamieson DJ, Honein MA, Petersen LR. Zika virus and birth defects—reviewing the evidence for causality. N Engl J Med. 2016;374: 1981–1987. doi: 10.1056/NEJMsr1604338 - DOI - PubMed
-
- Scott TW, Takken W. Feeding strategies of anthropophilic mosquitoes result in increased risk of pathogen transmission. Trends Parasitol. 2012;28: 114–121. doi: 10.1016/j.pt.2012.01.001 - DOI - PubMed
-
- Messina JP, Kraemer MU, Brady OJ, Pigott DM, Shearer FM, Weiss DJ, et al. Mapping global environmental suitability for Zika virus. eLife. 2016;5: e15272 doi: 10.7554/eLife.15272 - DOI - PMC - PubMed
Publication types
MeSH terms
Associated data
Grants and funding
LinkOut - more resources
Full Text Sources
Other Literature Sources
Medical