Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2017 Dec;10(4):325-331.
doi: 10.21053/ceo.2017.00101. Epub 2017 Apr 28.

Effect of Proparacaine in a Mouse Model of Allergic Rhinitis

Affiliations

Effect of Proparacaine in a Mouse Model of Allergic Rhinitis

Hwan Soo Kim et al. Clin Exp Otorhinolaryngol. 2017 Dec.

Abstract

Objectives: Lidocaine, a local anaesthetic is a treatment option in uncontrolled asthma due to its immunomodulatory effects. In the present study, proparacaine (PPC), a derivative of lidocaine was examined for its therapeutic application in a mouse model of allergic rhinitis.

Methods: The mice were grouped into 4 groups: control group, allergic rhinitis (AR) group, ciclesonide (CIC) group, and PPC group. Nasal symptom scores, eosinophil counts, goblet cell counts, and mast cells counts in the nasal mucosa were measured. Serum ovalbumin (OVA)-specific immunoglobulin (Ig) E, OVA-specific IgG1, OVA-specific IgG2a, interleukin (IL)-4, IL-5, and cortisol levels were measured.

Results: Intranasal administration of PPC significantly decreased nasal symptoms, number of eosinophils, goblet cells, and mast cells in the lamina propria of the nasal mucosa. Serum OVA-specific IgE, OVA-specific IgG1, OVA-specific IgG2a was significantly higher in the AR compared with the control group. Serum level of IL-4 was significantly lower in the CIC group and PPC group in comparison with AR group. Serum IL-5 showed no significant difference among all groups. No significant difference in serum cortisol levels was observed among the 4 groups.

Conclusion: PPC appears to have a therapeutic potential in treatment of allergic rhinitis in a mouse model by reducing eosinophil, goblet cell, and mast cell infiltration in the nasal mucosa.

Keywords: Allergic Rhinitis; Ciclesonide; Mice; Ovalbumin; Proparacaine.

PubMed Disclaimer

Conflict of interest statement

No potential conflict of interest relevant to this article was reported.

Figures

Fig. 1.
Fig. 1.
Schematic representation of the experimental allergic rhinitis model and treatment protocol. Briefly, on days 0, 7, and 14, mice were systemically sensitized by intraperitoneal administration of 100 μg of ovalbumin (OVA) mixed with 2 mg of aluminum hydroxide (Sigma-Aldrich) in 300 μL of phosphate-buffered saline (PBS) or PBS only (control group). During challenge, mice in the proparacaine (PPC) and ciclesonide (CIC) groups were treated intranasally with CIC at 15 μg/30 μL and PPC at 75 μg/30 μL, respectively, for 7 consecutive days.
Fig. 2.
Fig. 2.
Nasal symptom score. Rubbing (A) and sneezing (B). AR, allergic rhinitis; CIC, ciclesonide; PPC, proparacaine.
Fig. 3.
Fig. 3.
Levels of ovalbumin (OVA) specific immunoglobulin (Ig) E (A), OVA-specific IgG1 (B), and OVA-specific IgG2a (C) in the serum. OVA sensitization significantly increased OVA-specific IgE, OVA-specific IgG1, and OVA-specific IgG2, while intranasal treatment with CIC and PPC had no significant effect. AR, allergic rhinitis; CIC, ciclesonide; PPC, proparacaine.
Fig. 4.
Fig. 4.
Infiltration of eosinophils (arrows) in the nasal mucosa of BALB/c mice: (A) control group, (B) allergic rhinitis (AR) group, (C) ciclesonide (CIC) group, and (D) proparacaine (PPC) group (H&E, ×400). (E) Eosinophil counts in the nasal mucosa of each study group.
Fig. 5.
Fig. 5.
Infiltration of goblet cells in the nasal mucosa of BALB/c mice: (A) control group, (B) allergic rhinitis (AR) group, (C) ciclesonide (CIC) group, and (D) proparacaine (PPC) group (periodic acid Schiff staining, ×400). (E) Goblet cell counts in the nasal mucosa of each study group.
Fig. 6.
Fig. 6.
Infiltration of mast cells (arrows) in the nasal mucosa of BALB/c mice: (A) control group, (B) allergic rhinitis (AR) group, (C) ciclesonide (CIC) group, and (D) proparacaine (PPC) group (toluidine blue staining, ×400). (E) Mast cell counts in the nasal mucosa of each study group.
Fig. 7.
Fig. 7.
Effect of PPC on serum levels of Th2 cytokines, interleukin-4 (A), interleukin-5 (B). AR, allergic rhinitis; CIC, ciclesonide; PPC, proparacaine.
Fig. 8.
Fig. 8.
Serum level of cortisol. There was no significant difference among the groups. AR, allergic rhinitis; CIC, ciclesonide; PPC, proparacaine.

References

    1. Bousquet J, Khaltaev N, Cruz AA, Denburg J, Fokkens WJ, Togias A, et al. Allergic Rhinitis and its Impact on Asthma (ARIA) 2008 update (in collaboration with the World Health Organization, GA(2)LEN and AllerGen) Allergy. 2008 Apr;63 Suppl 86:8–160. - PubMed
    1. Nicolaizik WH, Marchant JL, Preece MA, Warner JO. Endocrine and lung function in asthmatic children on inhaled corticosteroids. Am J Respir Crit Care Med. 1994 Sep;150(3):624–8. - PubMed
    1. Phillip M, Aviram M, Leiberman E, Zadik Z, Giat Y, Levy J, et al. Integrated plasma cortisol concentration in children with asthma receiving long-term inhaled corticosteroids. Pediatr Pulmonol. 1992 Feb;12(2):84–9. - PubMed
    1. Toogood JH, Jennings B, Hodsman AB, Baskerville J, Fraher LJ. Effects of dose and dosing schedule of inhaled budesonide on bone turnover. J Allergy Clin Immunol. 1991 Oct;88(4):572–80. - PubMed
    1. Okada S, Hagan JB, Kato M, Bankers-Fulbright JL, Hunt LW, Gleich GJ, et al. Lidocaine and its analogues inhibit IL-5-mediated survival and activation of human eosinophils. J Immunol. 1998 Apr;160(8):4010–7. - PubMed