Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2017 Jan 1;8(1):789-794.
doi: 10.1039/c6sc03045a. Epub 2016 Sep 5.

Tailored oxido-vanadium(V) cage complexes for selective sulfoxidation in confined spaces

Affiliations

Tailored oxido-vanadium(V) cage complexes for selective sulfoxidation in confined spaces

Dawei Zhang et al. Chem Sci. .

Abstract

Five sets of oxido-vanadium(V) complexes, which include both cages and open structures, were prepared and tested in the catalytic oxidation of sulfides. It was found that the hemicryptophane complexes, which are simultaneously comprised of cyclotriveratrylene (CTV), binaphthol and oxido-vanadium(V) moieties, are the most efficient supramolecular catalysts. The specific shape of the confined hydrophobic space above the metal center leads to a strong improvement in the yield, selectivity and rate of the reaction, compared to the other catalysts investigated herein. A remarkable turnover number (TON) of 10 000 was obtained, which can be attributed to both the high reactivity and stability of the catalyst. Similarly to enzymes, the kinetic analysis shows that the mechanism of oxidation with the supramolecular catalysts obeys the Michaelis-Menten model, in which initial rate saturation occurs upon an increase in substrate concentration. This enzyme-like behavior is also supported by the competitive inhibition and substrate size-selectivity observed, which underline the crucial role played by the cavity.

PubMed Disclaimer

Figures

Fig. 1
Fig. 1. Structures of the five sets of oxido-vanadium(V) complexes.
Scheme 1
Scheme 1. Synthesis of the complex (S,S,S)-(S,S,S)-1.
Fig. 2
Fig. 2. Oxidation of thioanisol with four typical catalysts: (S,S,S)-(S,S,S)-1 in Set I, P-(S,S,S)-(S,S,S)-2 in Set II, M-(S,S,S)-3 in Set III and (S,S,S)-(S,S,S)-4 in Set IV (1.0 mol% catalyst, 1.0 equiv. of CHP, 0 °C, CH2Cl2).
Fig. 3
Fig. 3. Oxidation of thioanisol catalyzed by catalyst M-(S,S,S)-(R,R,R)-2 (0.01 mol% catalyst, 1.0 equiv. of CHP, r.t., CH2Cl2).
Fig. 4
Fig. 4. (a) Initial rate dependence on the concentration of thioanisol in CH2Cl2 with 1.1 mM hemicryptophane catalyst M-(S,S,S)-(R,R,R)-2 and 110 mM CHP at 0 °C. (b) Corresponding Lineweaver–Burke line plotted by 1/rate as a function of 1/[thioanisol].
Fig. 5
Fig. 5. (a) Graphical representation of catalysis inhibition by Me4N+. (b) Oxidation of thioanisol in the absence or presence of Me4N+ catalyzed by M-(S,S,S)-(R,R,R)-2 of Set II or (S,S,S)-(R,R,R)-4 of Set IV (1.5 mol% catalyst, 1.0 equiv. of CHP, 0 °C, CH2Cl2).
Fig. 6
Fig. 6. Oxidation of thioanisol (substrate A), benzylphenyl sulfide (substrate B), or naphthylmethyl phenyl sulfide (substrate C) with catalyst M-(S,S,S)-(R,R,R)-2 in Set II or (S,S,S)-(S,S,S)-1 in Set I (1.5 mol% catalyst, 1.0 equiv. of CHP, 0 °C, CH2Cl2).

References

    1. Raynal M., Ballester P., Vidal-Ferran A., Van Leeuwen P. W. N. M. Chem. Soc. Rev. 2014;43:1660. - PubMed
    2. Raynal M., Ballester P., Vidal-Ferran A., Van Leeuwen P. W. N. M. Chem. Soc. Rev. 2014;43:1734. - PubMed
    3. Brown C. J., Toste F. D., Bergman R. G., Raymond K. N. Chem. Rev. 2015;115:3012. - PubMed
    4. Pluth M. D., Bergman R. G., Raymond K. N. Acc. Chem. Res. 2009;42:1650. - PubMed
    5. Leenders S. H. A. M., Gramage-Doria R., de Bruin B., Reek J. N. H. Chem. Soc. Rev. 2015;44:433. - PubMed
    6. Breiner B., Clegg J. K., Nitschke J. R. Chem. Sci. 2011;2:51.
    7. Hyster T. K., Knörr L., Ward T. R., Rovis T. Science. 2012;338:500. - PMC - PubMed
    8. Heinisch T., Pellizzoni M., Dürrenberger M., Tinberg C. E., Köhler V., Klehr J., Schirmer T., Baker D., Ward T. R. J. Am. Chem. Soc. 2015;137:10414. - PubMed
    9. Hosseini M. W., Lehn J. M., Jones K. C., Plute K. E., Mertes K. B., Mertes M. P. J. Am. Chem. Soc. 1989;111:6330.
    1. Kohyama Y., Murase T., Fujita M. J. Am. Chem. Soc. 2014;136:2966. - PubMed
    2. Horiuchi S., Murase T., Fujita M. Angew. Chem., Int. Ed. 2012;51:12029. - PubMed
    3. Ikemoto K., Inokuma Y., Fujita M. J. Am. Chem. Soc. 2011;133:16806. - PubMed
    4. Nishioka Y., Yamaguchi T., Kawano M., Fujita M. J. Am. Chem. Soc. 2008;130:8160. - PubMed
    5. Wang Z. J., Clary K. N., Bergman R. G., Raymond K. N., Toste F. D. Nat. Chem. 2013;5:100. - PubMed
    6. Hart-Cooper W. M., Clary K. N., Toste F. D., Bergman R. G., Raymond K. N. J. Am. Chem. Soc. 2012;134:17873. - PubMed
    7. Hastings C. J., Fiedler D., Bergman R. G., Raymond K. N. J. Am. Chem. Soc. 2008;130:10977. - PubMed
    8. Wang Z. J., Brown C. J., Bergman R. G., Raymond K. N., Toste F. D. J. Am. Chem. Soc. 2011;133:7358. - PubMed
    9. Pluth M. D., Bergman R. G., Raymond K. N. Science. 2007;316:85. - PubMed
    10. Kaphan D. M., Levin M. D., Bergman R. G., Raymond K. N., Toste F. D. Science. 2015;350:1235. - PubMed
    11. Shenoy S. R., Crisostomo F. R. P., Iwasawa T., Rebek Jr J. J. Am. Chem. Soc. 2008;130:5658. - PubMed
    12. Smulders M. M. J., Nitschke J. R. Chem. Sci. 2012;3:785.
    13. Gramage-Doria R., Hessels J., Leenders S. H. A. M., Tröppner O., Dürr M., Ivanović-Burmazović I., Reek J. N. H. Angew. Chem., Int. Ed. 2014;53:13380. - PubMed
    14. Kersting B. Z. Anorg. Allg. Chem. 2004;630:765.
    15. Käss S., Gregor T., Kersting B. Angew. Chem., Int. Ed. 2006;45:101. - PubMed
    16. Steinfeld G., Lozan V., Kersting B. Angew. Chem., Int. Ed. 2003;42:2261. - PubMed
    17. Di Stefano S., Cacciapaglia R., Mandolini L. Eur. J. Org. Chem. 2014:7304. - PubMed
    18. Kataev E. A., Müller C. Tetrahedron. 2014;70:137.
    1. Wang Z. J., Brown C. J., Bergman R. G., Raymond K. N., Toste F. D. J. Am. Chem. Soc. 2011;133:7358. - PubMed
    2. Hastings C. J., Bergman R. G., Raymond K. N. Chem.–Eur. J. 2014;20:3966. - PubMed
    3. Hastings C. J., Pluth M. D., Bergman R. G., Raymond K. N. J. Am. Chem. Soc. 2010;132:6938. - PubMed
    4. Kopilevich S., Muller A., Weinstock I. A. J. Am. Chem. Soc. 2015;137:12740. - PubMed
    1. Hooley R. J. Nat. Chem. 2016;8:202. - PubMed
    2. Wang Q.-Q., Gonell S., Leenders S. H. A. M., Dürr M., Ivanović-Burmazović I., Reek J. N. H. Nat. Chem. 2016;8:225. - PubMed
    3. Cullen W., Misuraca M. C., Hunter C. A., Williams N. H., Ward M. D. Nat. Chem. 2016;8:231. - PubMed
    4. Sanders J. K. Chem.–Eur. J. 1998;4:1378.
    5. Yoshizawa M., Tamura M., Fujita M. Science. 2006;312:251. - PubMed
    6. Kang J., Rebek Jr J. Nature. 1997;385:50. - PubMed
    7. Mosca S., Yu Y., Gavette J. V., Zhang K. D., Rebek Jr J. J. Am. Chem. Soc. 2015;137:14582. - PubMed
    1. Brown C. J., Miller G. M., Johnson M. W., Bergman R. G., Raymond K. N. J. Am. Chem. Soc. 2011;133:11964. - PubMed

LinkOut - more resources